本文仅关注应用量子机器学习方法提高基于多特征土壤和气候数据的作物产量预测准确性的可能性。主要目标是提高作物产量预测模型的效率,这对于提高一个国家的产量和粮食比例至关重要。复杂性也抛弃了监督分析方法,随着农业产业的扩大,非线性也随之增长。这些领域现在涵盖了更广泛的相互关联的元素,包括土壤类型和养分含量、它们与土壤水分含量的关系、气温、降雨量和其他因素。在这项研究中,我们使用量子计算来解决处理高阶数据的问题,比传统计算机中提出的相同问题更熟练。在本文中,我们开发了 QSVM 和 QNN 并将其整合到传统的机器学习模型中,以从包含多年土壤和天气区域和时间信息的大型高度复杂的数据集中学习。我们相信这些模型可以揭示 QSVM 和 QNN 更适合检测的模式,因为它们具有可扩展性和在大型数据集上计算的能力。因此,量子增强模型在预测能力方面优于传统方法,显示出优异的 MSE 值和稳健性值。具体而言,由于变量之间存在高度非线性关系,量子技术的集成增强了泛化能力。这些结果表明,QML 可以显著改善作物产量估计,因为它的预测更准确,可直接应用于农业实践和政策。这项研究将扩大关于量子计算在农业中应用的文献,因为它是一个新兴领域,有可能解决粮食生产中的各种挑战。在作物产量预测领域,我们正在为更不易受到影响的农业结构奠定基础,这些结构能够满足未来的气候条件和不断增长的全球粮食需求。因此,这项研究呼吁对农业中其他基本用例中潜在的基于量子的解决方案进行更多研究。
土壤和水管理证书土壤和水是农业的两个重要组成部分。这两个重要资源的管理是农业活动的中心。这两个要素都面临现代生活和当前农业实践的压力。道路,房屋和其他建筑物的发展已经侵占了乡村,施加压力,以降低洪水风险。通过更多的谷物,更多的油种子强奸和更多的饲料玉米的变化,只有3个例子,就在农场管理土壤和水的方式上施加了自己的动力。当今的拖拉机和设备的功率和能力意味着可以在以前很难或不可能的情况下生产土壤并生产苗床。该设施对农民有很大帮助,但它也可以使我们远离土壤管理的最佳实践。在过去的50年中,建立较大的领域也改变了排水模式,在某些情况下,填充沟渠和树篱去除的情况已将自然边界带到了以前轮廓的区域,以最大程度地减少侵蚀或识别土壤类型的变化。所有这些问题使仔细并考虑使用土壤和水的两个重要资源,这是农场农艺建议中最重要的要素。随着农业行业采用更具环境意识的方法,建议的重点正在改变,而“不惜一切代价”的管理类型的管理类型不会以当前的思维方式,即未来的方式。新的Beta资格是在2003年推出的,ICM是该资格的一部分。2004年提出了新的修订的植物保护奖。因此,土壤和水管理证书现在与这两个模块(Beta和植物保护奖)并肩作用,作为农艺基础文凭的一部分。土壤和水管理证书的主要内容集中在: - 土壤和防空;培养技术和系统;侵蚀风险;土壤水,排水和灌溉;植物营养和肥料计划;使用笨重的有机材料来增强作物的生长及其对弥漫性污染的影响。上面链接的教学大纲内容一起形成了复合土壤和水管理证书。
在旨在减少国家和全球二氧化碳预算的政策中,增加土壤有机碳储量的管理实践值得更多关注,类似于重新造林或造林和生物燃料计划(参见《联合国气候变化框架公约京都议定书》)。增加土壤碳储量的最佳管理实践基本上是那些增加土壤有机质输入和/或降低土壤有机质分解速度的实践。根据本评论,增加土壤碳储量的最适当管理实践因地而异。现有的最佳管理实践需要根据土壤类型和土地利用系统进行评估和调整,最好由农业生态区域进行。农业生态区讨论了可用于增加主要农业土壤中碳储量的各种技术方案的可行性。我们的探索性情景采用了关于土壤碳封存潜力增加的必然粗略假设,结果表明,如果世界上“退化”和“稳定”的农业用地得到恢复和/或进行适当的管理,未来 25 年内可以封存 14 ±7 Pg C,50 年内的潜力甚至更高。当考虑“退化”和“稳定”的农业用地、大面积草地和森林再生类别时,这个数字将是 20 ± 10 Pg C。根据这些情景,平均每年可封存 0.58 到 0.80 Pg C;这相当于每年产生的人为 CO 2 -C 的约 9-12%。这些情景假设可以对全球大部分土壤进行“最佳”管理和/或操作;然而,由于经济、环境和社会/文化条件的限制,这些措施的实施不一定可行。通过增加土壤碳封存来缓解大气中的二氧化碳,在应对其他全球挑战(如防治土地退化、提高土壤质量和生产力以及保护生物多样性)方面尤其有意义。有效的缓解政策很可能基于多种适度且经济合理的减排措施的组合,这些措施将为社会带来额外的好处。在确定这些“最佳做法”时,还必须充分注意其中一些做法可能产生的任何不利的环境和社会经济影响。
Ron Bingner,ARS首席科学家,国家沉积实验室,598 McElroy Dr.,牛津,密西西比州38655。 Information requests, copies of the model, and model documentation can be directed to the AGNPS WEB site at: http://www.ars.usda.gov/Research/docs.htm?docid=5199 or contact Ron at 662-232-2966 (email: Ron.Bingner@usda.gov ) Description The Annualized Agricultural Non-Point Source Pollution Model ( Annagnps)是一个连续的模拟流域规模程序。 该模型是单个事件模型AGNP中开发的功能的扩展,并且是下一代AGNPS建模组件套件的模型套件中的污染物加载模型。 使用Annagnps,就土壤类型,土地使用,土地管理和气候而言,分水岭被细分为同质土地区域。 区域可以具有任何形状,包括基于水文的或方格网格(如单事件AGNP中使用)。 Annagnps模拟了使土地区域(牢房)及其随后穿过流域的地表水,沉积物,养分和农药。 一些沉积物,养分和农药将到达流域出口,而其余的将沉积在流系统中。 计算是在每日时间步长完成的。 径流数量基于径流曲线编号,而板和rill沉积物是使用rusle确定的。 包括特殊的组件,以处理浓缩的养分(饲养场和点源),短暂的沟渠来源,浓缩沉积物(经典沟渠),添加的水(灌溉)以及河岸缓冲液和湿地的影响。Ron Bingner,ARS首席科学家,国家沉积实验室,598 McElroy Dr.,牛津,密西西比州38655。Information requests, copies of the model, and model documentation can be directed to the AGNPS WEB site at: http://www.ars.usda.gov/Research/docs.htm?docid=5199 or contact Ron at 662-232-2966 (email: Ron.Bingner@usda.gov ) Description The Annualized Agricultural Non-Point Source Pollution Model ( Annagnps)是一个连续的模拟流域规模程序。该模型是单个事件模型AGNP中开发的功能的扩展,并且是下一代AGNPS建模组件套件的模型套件中的污染物加载模型。使用Annagnps,就土壤类型,土地使用,土地管理和气候而言,分水岭被细分为同质土地区域。区域可以具有任何形状,包括基于水文的或方格网格(如单事件AGNP中使用)。Annagnps模拟了使土地区域(牢房)及其随后穿过流域的地表水,沉积物,养分和农药。一些沉积物,养分和农药将到达流域出口,而其余的将沉积在流系统中。计算是在每日时间步长完成的。径流数量基于径流曲线编号,而板和rill沉积物是使用rusle确定的。包括特殊的组件,以处理浓缩的养分(饲养场和点源),短暂的沟渠来源,浓缩沉积物(经典沟渠),添加的水(灌溉)以及河岸缓冲液和湿地的影响。输出以所选流范围的事件为基础表示,并在仿真期间从土地或覆盖范围组件中作为源跟踪(对出口或流域中的任何其他点的贡献)表示。使用Annagnps可用于评估农业流域的非点源污染,并比较在流域内随着时间的推移实施各种保护替代方案的效果。剪纸和耕作系统可用于评估可以评估可评估用于评估可以评估床头和毛利沟侵蚀,肥料,农药和灌溉施用率,点源负载,饲养场管理,受控排水,河岸缓冲和湿地管理。模型分配了地表径流和浸润之间的可溶营养和农药。从饲料中的可溶性营养素也随着径流运输。沉积物传输的养分和农药。在添加到流系统之前,将针对土地区域和沟渠确定的沉积物细分为粒度类别(粘土,淤泥,沙子,小骨料和大骨料)。粒径在流到达中分别路由。输出参数(水,沉积物,养分和农药)由所需的分水岭源位置(特定的单元格,饲料,饲料,点源和沟渠)选择用于模拟周期源跟踪。源跟踪指示来自用户确定的分水岭源位置的流域插座(或任何其他点)处污染物加载的分数。可以识别多个流域源位置,每个源位置都有自己的一组输出参数。可以在每个径流事件的所需的流到达位置确定用户选择的污染物加载。
b" 对限制或提供雨水控制机会的场地特征和条件进行叙述性分析或描述。包括土壤类型(包括自然资源保护局 (NRCS) 定义的水文土壤组)、场地坡度和地下水深度。对保护自然资源的场地设计特征进行叙述性描述。对场地设计特征、建筑特征和路面选择进行叙述性描述和/或制表,以尽量减少场地的不透水性。对 DMA 进行制表和大小计算,包括自处理区、自保留区、排水至自保留区的区域以及排水至雨水管理设施的区域。详细信息和描述表明有足够的水头将径流引导到、流经和流出每个雨水管理设施到批准的排放点。已识别污染源的表格,以及针对每个污染源,用于最大程度减少污染物的源头控制措施。视情况而定,请参阅市政府关于垃圾围栏和装卸码头的标准计划,以及消防喷淋试验水排放指南。上述市政府网站上提供了此信息的链接。雨水管理设施中所选植物种类的清单以及选择这些植物种类的原因。包括如何灌溉植物以尽量减少用水量并确保植物存活的说明。请参阅上述市政府关于植物选择、间隔和灌溉的指南。提供了如何防止垃圾和杂物进入市政雨水排水系统的说明和详细信息。上述市政府网站上提供了已获批准的完整垃圾收集设备清单。所有雨水管理设施的一般维护要求。所有雨水管理设施的维护通道说明。设施维护和更换的资金来源和永久实施方式。识别与规范或要求的任何冲突,或实施雨水控制计划的其他预期障碍。土木工程师、建筑师和景观设计师的认证。适用时,附录:湾区水文模型表明符合水文改造管理标准。适用时,附录:描述在拆除活动期间如何管理含 PCB 的建筑材料。有关更多信息,请参阅此网页:https://dublin.ca.gov/2113。"
印度的第三次月球任务Chandrayaan-3将在月球高纬度位置部署一个着陆器和一个流浪者,使我们能够对这种原始位置进行有史以来的首次原位科学调查,这将有可能提高我们对主要地壳形成和后续修改过程的理解。主要着陆点(PLS)位于69.367621°,32.348126°。作为偶然性,在几乎相同的纬度上选择了替代着陆点(ALS),但向西约450 km至PLS。在这项工作中,使用了有史以来最好的高分辨率Chandrayaan-2 OHRC Dems和Ortho-images进行了对ALS的地貌,组成和温度特征的详细研究,该数据是从Chandrayaan-1和On Incon each each each each each each eachine lunar侦察机获得的数据集。为了理解热物理行为,我们使用了一个完善的热物理模型。我们发现Chandrayaan-3 ALS的特征是平滑的地形,中央部分相对较高。als由埃拉托斯尼(Eratosthenian)年龄的莫雷特斯(Moretus-A火山口)主导,位于Tycho Crater的喷出毯上。ALS是一个科学有趣的地点,可以从Tycho和Moretus中取出弹射材料。然而,由于存在Eratosthenian年龄喷射材料,该地点是巨石富集,OHRC得出的危险图证实了ALS内的75%无危险区域,因此适合着陆和漫游者操作。带有APX和LIBS板上的Tycho弹出的痕迹将有助于理解ALS内的组成变化。基于位点的光谱和元素分析,Fe的重量百分比约为4.8(wt。%),毫克〜5 wt。%和Ca〜11 wt。%。在构图上,ALS类似于具有典型的高地土壤类型组成的PL。的空间和昼夜变异性约为40 K和〜175 K。与PL相比,ALS属于类似位置,但与PL相比,ALS显示出降低的白天温度和夜间温度的降低,这表明与PL相比具有独特的热物理特征。像PLS一样,ALS似乎也是科学调查的有趣场所,Chandrayaan-3有望为对月球科学的理解提供新的见解,即使它恰好降落在替代着陆点。
表 1.1 报告结构 6 表 2.1 地块描述 10 表 2.2 周边物业和土地用途 10 表 4.1 项目与西澳州 2050 规划战略的一致性 22 表 4.2 项目与西澳气候政策的一致性 22 表 4.3 项目与西澳能源转型战略的一致性 23 表 4.4 项目与西澳分布式能源资源路线图的一致性 24 表 4.5 项目与西澳大利亚未来电池产业战略的一致性 24 表 4.6 对西澳规划立场声明 – 可再生能源设施的考虑 25 表 4.7 对州规划政策 2 的考虑 26 表 4.8 项目与州规划政策 2.5 的一致性 27 表 4.9 项目与州规划政策 2.9 的一致性 27 表 4.10 项目与州规划政策 3.7 的一致性 28 表 4.11 对 EPA 的考虑指导声明 33 28 表 4.12 项目与 Bunbury-Geographe 次区域战略的一致性 29 表 4.13 项目与 Collie 郡地方规划战略的一致性 30 表 4.14 对 Collie 郡地方规划方案 6 号的考虑 31 表 4.15 乡村区域规划目标 31 表 4.16 LPS 6 号一般发展标准 33 表 4.17 项目与战略社区计划的一致性 35 表 4.18 对 1986 年环境保护法的考虑 36 表 4.19 对 1997 年环境保护(噪音)条例的考虑 37 表 4.20 对 1999 年环境保护和生物多样性保护法的考虑 37 表 4.21 对 1972 年原住民遗产法的考虑 38 表 4.22 对原住民1914 年《水利灌溉法》 38 表 4.23 对 2012 年《水务服务法》的审议 39 表 5.1 利益相关方参与活动时间表 41 表 5.2 政府机构利益相关方 42 表 6.1 拟议项目占地面积内的土壤类型 54
理学硕士(技术)地球物理学 GS-101 地质学 I 第一单元:地质学的基本假设、地质学与科学的关系 - 地质学的分支 - 地球的形状和尺寸、地球的结构、成分和起源 - 地壳、地幔、地核的外壳、外部动态过程 - 风化、风化地质工作、侵蚀和剥蚀、侵蚀循环、运输和沉积剂 - 黄土、地貌。沙漠类型。第二单元:地表流水的地质工作 - 溪流、河流及其发展。河流系统 - 蜿蜒、牛轭湖、洪泛平原、准平原和三角洲。地下水的地质工作 - 岩石的渗透性、岩石中的水类型 - 地下水的分类 - 泉水。矿产水-碳酸盐、硫化物和放射性水。喀斯特地貌、山体滑坡、湖泊和沼泽、河口。内部动态过程-构造错位、新构造运动、地震。岩浆作用-火山。海洋地质工作-海洋盆地-世界地貌特征、海底。海水温度、盐度。海洋破坏工作-近岸堆积形式-海洋各区域的沉积。海洋沉积物的分布。第三单元:地貌学的基本概念-地貌过程-地貌分布-排水模式-发展。流域、流域的形态分析。山坡的元素-山麓、山脊。与岩石类型、古河道、地下河道有关的地貌。土壤类型及其分类。印度主要地貌过程的演变。海洋地貌过程、沿海形态过程。野外和实验室地图比例尺、地形图、专题地图、地形和地貌剖面图。第四单元:火成岩、变质岩和沉积岩的结构、结构和化学分类及起源-岩石形成、花岗岩化。伟晶岩、金伯利岩和冈底岩的岩石学特征 - 沉积结构 - 砾岩、砂岩、页岩、石灰岩的岩石学特征。白云岩化过程。变质作用 - 页岩、千枚岩、片岩、片麻岩、大理石石英岩和麻粒岩的结构分类。第五单元:矿物科学、矿物的物理和光学特性。长石、云母、辉石、角闪石、橄榄石、石英和石榴石组的分类、结构和化学性质。粘土矿物、原生元素的成因和化学性质。4.5.晶体学要素、晶体轴、晶体的对称形式和晶体的分类。书籍:l. 物理地质学,G.Gorshkov,A.Yakushova 2。物理地质学,A.K.Datta 3。地质学教科书,P. K Mukherjee。岩石学原理,G.W.Tyrell。Rutleys 矿物学,H.M.Read 6。物理地质学,Arthur Holmes
植物病害爆发代表着全球粮食安全和环境可持续性的重大挑战,导致初级生产力下降、生物多样性减少,以及全球严重的粮食/饲料短缺。合成杀菌剂的滥用已经对人类健康和生态系统造成了重大危害。某些人类疾病,如阿尔茨海默氏症和自闭症,在过去几十年中急剧上升,这一趋势部分归因于现代农业和园艺中杀菌剂的使用/过度使用。鉴于这些令人担忧的迹象,现在应该重新考虑植物病害管理策略了。使用某些有益微生物(称为生物防治剂)有望成为对抗植物病原体的环保方法。卵菌通常被视为植物界的坏人,通过晚疫病、猝倒病和枯萎病等破坏性疾病造成混乱,这可能会造成灾难性的后果,例如爱尔兰马铃薯饥荒。然而,并非所有卵菌都是有害的!有些菌是伪装的好家伙,显示出帮助我们对抗植物疾病的潜力,可以作为有效的生物防治剂。了解生物防治卵菌保护作用的潜在机制对于实现理想结果和制定创新策略至关重要。卵菌的生物防治机制可分为五类:i)菌寄生,ii)分泌溶解酶,iii)与病原体竞争营养和空间,iv)诱导系统抗性(ISR),v)产生注射细胞(枪细胞)。本综述阐明了卵菌采用的生物防治机制,强调了它们的潜在实际意义以及对植物生长的积极影响。本文还讨论了影响生物防治卵菌功效的土壤和环境因素,以及旨在提高其生物防治效率或扩大目标病原体范围的各种策略。尽管对生物防治卵菌的了解取得了进展,但由于受环境条件、土壤类型、接种物活力、竞争微生物的影响,其田间表现不一致,因此其商业应用面临挑战。通过开发稳定的配方、基因改造、合成生物学、结合多种菌株以及与其他农艺实践相结合来提高生物防治卵菌的功效,可以帮助克服这些挑战并促进其在可持续农业中的应用。进行全面的风险评估以避免非目标效应,并简化监管审批流程也至关重要。了解生物防治卵菌如何抵抗植物病原体将提高我们对有益和有害微生物之间相互作用的基本认识,增强我们预测受其影响的植物疾病发展动态的能力
2020 年 1 月 8 日 过去几年来,随着康涅狄格州和其他州投资这一重要资源以进一步减少温室气体排放,太阳能开发规模不断扩大。大型太阳能电池阵的建设中固有的大量不透水表面与《建筑活动雨水排放和废水脱水通用许可证》(“通用许可证”)所监管的大多数其他建筑活动不同,并且带来了传统开发项目中未遇到的挑战。如果不通过适当的设计和缓解措施进行妥善管理,太阳能电池阵建设期间和建设后排放的雨水可能成为导致径流、侵蚀和沉积增加的重要污染源,从而对湿地或其他自然资源产生不利影响。太阳能装置必须经过适当设计,以确保土壤稳定,最大限度地减少土壤扰动和土壤压实,并解决无效控制问题,以管理总径流量和流速,这可能导致表土流失、受干扰区域和雨水出口的侵蚀和沉积物排放,以及下游河道和河岸的侵蚀。随着场地不透水性的增加,在施工期间和施工后解决这些重大环境问题的能力变得更加困难。太阳能设施必须满足的一般许可证的环境目标没有改变。改变的是设计假设和雨水管理技术的应用以及满足这些要求的工程原则和实践,以及该部门对不同技术和工程实践满足基本环境要求的能力的知识和经验。该部门有义务运用其对管理技术和工程实践和原则的最佳理解。同时,该部门努力在许可太阳能设施的方法上提供更多的可预测性和透明度,以促进该州的环境合规性和有竞争力的太阳能开发。为此,DEEP 发布了本指南,可在 www.ct.gov/deep/stormwater 上获取,以捕捉该部门当前审查大型太阳能电池阵列施工活动的方法,以协助从事设计和建造大型和小型太阳能电池阵列项目的专业人员,并提供更透明的了解该部门如何考虑新出现的问题及其解决方式。该指南描述了该部门对这些专业人员如何确保任何此类项目的设计和建造考虑到现场条件的期望,例如:降水量、频率、强度和持续时间;土壤类型、地形、地表地质,水文和自然资源;以及施工期间和施工后现场活动导致的此类条件的任何变化,以尽量减少侵蚀和沉积并控制雨水排放,包括峰值流量和总雨水径流量和速度。本指南还应有助于促进雨水污染控制计划(计划)的准备和有效审查,该计划是为支持一般许可证覆盖范围的申请而提交的。