摘要:定性和定量评估评估液体储罐的结构脆弱性。液体储罐通常是在坚硬土壤的区域建造和操作的,以最大程度地减少构成影响。但是,其中许多关键结构都在具有软土的沿海地区。这项研究进行的研究需要在各种条件下准确地对有限元的方法进行精确模拟半植物混凝土储罐的地震行为,包括改变水位和土壤特性。该研究通过动态分析矩形半埋水罐进行了流体结构和土壤 - 结构相互作用,并比较其不同的参数。它还确定了储罐中液体泄漏概率的敏感区域。将建模与日本振动能力诊断表中的定性评估进行了比较。结果表明,与膨胀关节相邻的壁中的拉伸应力大于在所有情况下壁中的相应应力。在土壤类型的动态分析中,表面的压力随水高的增加而增加。对定量和定性评估结果的比较表明,储罐可能在膨胀关节中的软土中泄漏。
城市集群环境安全和绿色发展的关键实验室,教育部,生态学,环境与资源学院,广东技术大学,广州大学,广州510006,B中国B农业资源与环境研究所,江苏大学农业科学学院,农业科学科学科学科学科学科学科学系,北美农业科学学院Ottingen,37077 G ottingen,德国D人民友谊大学(Rudn University),117198,俄罗斯莫斯科,俄罗斯E州主要水中水主要实验室,北京师范大学,北京师范大学,北京100875年,北京大学,伯林研究所,北卡罗来纳大学,北京大学研究所。 (BBIB),柏林,德国
土壤微生物与土壤中发生的许多过程密切相关,包括向植物供应养分,通过生长激素的产生来刺激植物的生长,控制植物病原体的活性,维持土壤结构的活性,并促进无机污染物的浸出和矿物质污染物的矿物质(beave and in。 2000; Hayat,Ali,Amara,Khalid和Ahmed,2010年;这些微生物社区具有巨大的新陈代谢和生理性质,这使它们能够在土壤环境中生活,适应和扩散,这些土壤环境也表现出极高的结构和化学异性恋(Madigan,Clark,Clark,Stahl,Stahl,&Martinko,2010年)。尽管在肥沃的土壤中细菌丰度较高,但细菌仅占土壤表面的一小部分(Young,Crawford,Nunan,Otten,Otten和Spiers,2008年)。在土壤中,微生物倾向于聚集(Ekschmitt,Liu,Vetter,Fox和Wolters,2005年),在非常小的土壤中形成微生物热点(<1 cm 3)。在评论中,Kuzyakov和Blagodatskaya(2015)认为,大多数生物地球化学过程都在这些热点中进行。这种热点本质上是短暂的,并且来自物理,化学和微生物过程之间的复杂相互作用。这种活动热点的例子包括根际,碎屑和土壤骨料表面。微生物活性的热点不存在。上述过程需要各种条件的托管。在这些热点示例中,根际是最动态的,热点持续日子,而与土壤结构相关的热点可以更持久,并且可以持续几个月。土壤孔在形成诸如土壤结构之类的热点的形成中起着重要作用,形成了相互联系的网络,通过该网络,包括氧的扩散,酶的运输以及分离的有机物,细菌的迁移率和细菌之间的相互作用。许多研究人员在微生物量表上观察到细菌分布中的空间模式(Kizungu等,2001; Nunan,Wu,Young,Crawford,&Ritz,2003;VieubléGonod,Chadoeuf,Chadoeuf和Chenu,&Chenu,2006年)。,例如VieubléGonod等。(2006)观察到土壤中2,4-D(2,4二氯苯氧基酸)的矿化的异质模式,从田间到微栖息地量表时的可变性增加。
摘要。北极变暖会加速融雪,在早春和澳大利亚末更频繁地揭露浅层或没有雪覆盖的土壤表面。FTC通过增加或减少溶解的有机碳(DOC)的量来影响北极土壤C动力学;但是,基于机理的DOC变化的解释认为其他土壤生物地球化学特性是有限的。为了了解FTC对北极土壤反应的影响,我们设计了来自阿拉斯加的表面有机土壤的缩影,并研究了几种土壤生物地球化学的变化,用于在-9.0±0.3°C时连续冻结的七个连续温度波动,并以6.2±0.3°C融化为12 h。ftc显着改变了以下土壤变量:土壤CO 2的生产(CO 2),DOC和总疾病氮(TDN)含量,两个DOC质量指数(SUVA 254和A 365 / A 254),微凝集物(MicroAggregate)(53-250 µm)(53-250 µm)分布和小型Mesopore(53-250 µm);多变量统计分析表明,FTCS改善了微聚集物和小型中孔的土壤结构,从而促进了土壤微生物的DOC分解以及FTCS的DOC数量和质量变化。这项研究表明,FTCS增加了土壤CO 2的产生,表明FTC影响了DOC的性质,而没有负面影响微生物活性。土壤微聚集通过FTC增强,随后的微生物活性和小型孔比例的折痕可以促进DOC分解,从而减少DOC数量。这项研究提供了一种基于机制的插入性,即FTC如何通过结合结构变化和微生物反应来改变活性层中有机土壤的DOC特征,从而提高了我们对北极土壤C动力学的理解。
摘要:使用有机肥料和玉米稻草作为友好的修正措施,可有效改变农田中的土壤氮(N)循环。然而,有机肥料与稻草返回对土壤质量的综合作用尚不清楚,尤其是在响应土壤硝化作用和硝化微生物方面。我们在中国东北部的毛毛土壤中建立了一个实验,主要包括四种治疗方法:CK(没有传统化肥的没有添加),O(有机肥料施用),S(稻草返回)和OS(有机肥料与稻草返回)。使用高通量测序进一步研究了土壤硝化和硝化微生物。我们的结果表明,与CK相比,土壤水含量,容量,直径> 0.25 mm,平均重量直径,总碳,总氮,铵,硝酸铵,硝酸盐,微生物生物量碳和微生物生物氮的含量不正确,并渗透了尤其均匀的尤其尤其是尤其是尤其尤其均匀的压缩性,并渗透了尤其均匀的尤其是尤其是尤其均匀的尤其均匀的尤其尤其是屈光度,并且渗透于尤其是尤其是尤其的渗透性,并取代了尤其的渗透性,并取得S和OS治疗。此外,OS处理有效地增加了可用的钾和可用的磷含量,并减少了三相R型。有机肥料和稻草的应用有效地优化了土壤结构,尤其是OS处理。与CK,O,S和OS治疗相比,氨氧化古细菌(AOA)的丰度较高,并进一步增强了α多样性和较低的氨氧化细菌(AOB)和NIRK -,NIRK-,NIRS-和Nosz -nosz -Type denitpe denitpe denitpe。AOA和NIRK分别是氨氧化过程和亚硝酸盐还原过程的关键驱动因素。同时,有机肥料和稻草的施用调节了硝基磷酸盐(AOA),γ-杆菌(NIRK和NIRS),α),甲状腺酸细菌(NIRK)和贝protebacteria(Nirk)和β(Nirs)(NIRS(NIRS)。有机肥料和稻草通过增强硝化和反硝化微生物群落中的含量丰富,返回土壤结构。在一起,OS治疗是一种合适的稻草返回实践,用于优化中国东北部农田生态系统的营养平衡。但是,这项研究并未确定如何在有机肥料应用和稻草返回下减少传统的氮肥施用;因此,我们旨在在未来的工作中进行相关研究。
橄榄垃圾,也称为橄榄色的Pomace,是橄榄油提取剩下的残留物。它由橄榄皮,果肉,种子和剩余的油组成。这种副产品传统上被认为是一种废物,经常被丢弃或燃烧。但是,最近的研究表明,橄榄浪费可能是有价值的资源,具有巨大的土壤改善潜力。当将橄榄废物纳入土壤中时,它可以通过增加其有机物含量并促进更好的土壤聚集来帮助改善土壤结构。这反过来可以改善水浸润和保留,并减少土壤侵蚀。此外,橄榄废物还含有氮,磷和钾,可以帮助改善土壤生育能力并为植物生长提供必需的养分。此外,橄榄废物也会对土壤微生物活性产生积极影响。橄榄废物中的有机物为土壤微生物提供了食物来源,在养分循环和土壤健康中起着至关重要的作用。这些微生物有助于分解有机物,释放营养和抑制植物病原体,最终有助于更健康,更有生产力的土壤生态系统。总而言之,橄榄废物是一种有价值的副产品,可以对土壤特性产生重大影响。通过将橄榄废物纳入土壤中,农民可以改善土壤结构,生育能力和微生物活性,从而导致更健康的植物并增加农作物的产量。此外,在土壤管理实践中使用橄榄浪费也可以帮助减少废物并促进农业的可持续性。关键字:橄榄浪费,土壤结构,土壤生育能力,土壤微生物。
ge土壤微生物已经用于数百万英亩的美国农田,而没有足够的安全评估或法规。健康的土壤中充满了数十亿个微生物,包括细菌,真菌和原生动物。这些生物会调节全球碳和氮气周期,建立土壤结构,为害虫和疾病提供免疫力,并在土壤中解锁养分,因此农作物可以繁衍生息。在构成活土壤的数十亿种微生物中,土壤微生物组在农业E和气候中起着至关重要的作用。健康的土壤中挤满了小小的活微生物的bil狮,包括bacte ria,真菌和原生动物。这些有机体调节全球碳和氮气周期,Bui LD土壤结构,可为害虫和疾病提供免疫力,并在土壤中解锁养分,因此C rops可以繁衍生息。
改善土壤结构并增加SOM是气候智能农业的关键目标,因为既倾向于增加浸润和排水,改善曝气,增强水和养分持有能力,并降低压实和侵蚀性损失的风险(Steenwerth等人。2014; Lal等。2018)。传统上,土壤和农业科学家将这种有机物的构建过程视为简单的碳等式,碳输出。SOM只能通过增加总碳输入来增加(即根,残基或有机修正案)或减少总损失(来自耕作,侵蚀等)。对SOM的更细微的理解强调了其保存是由土壤结构,微生物生理和土壤生物能够发挥作用的整体效率所决定的生态系统特性(Schmidt等人。2011)。土壤中的所有有机碳都是微生物分解的“公平游戏” - 仅通过与粘土和/或物理遮挡的络合而稳定