城市集群环境安全和绿色发展的关键实验室,教育部,生态学,环境与资源学院,广东技术大学,广州大学,广州510006,B中国B农业资源与环境研究所,江苏大学农业科学学院,农业科学科学科学科学科学科学科学系,北美农业科学学院Ottingen,37077 G ottingen,德国D人民友谊大学(Rudn University),117198,俄罗斯莫斯科,俄罗斯E州主要水中水主要实验室,北京师范大学,北京师范大学,北京100875年,北京大学,伯林研究所,北卡罗来纳大学,北京大学研究所。 (BBIB),柏林,德国
摘要:使用有机肥料和玉米稻草作为友好的修正措施,可有效改变农田中的土壤氮(N)循环。然而,有机肥料与稻草返回对土壤质量的综合作用尚不清楚,尤其是在响应土壤硝化作用和硝化微生物方面。我们在中国东北部的毛毛土壤中建立了一个实验,主要包括四种治疗方法:CK(没有传统化肥的没有添加),O(有机肥料施用),S(稻草返回)和OS(有机肥料与稻草返回)。使用高通量测序进一步研究了土壤硝化和硝化微生物。我们的结果表明,与CK相比,土壤水含量,容量,直径> 0.25 mm,平均重量直径,总碳,总氮,铵,硝酸铵,硝酸盐,微生物生物量碳和微生物生物氮的含量不正确,并渗透了尤其均匀的尤其尤其是尤其是尤其尤其均匀的压缩性,并渗透了尤其均匀的尤其是尤其是尤其均匀的尤其均匀的尤其尤其是屈光度,并且渗透于尤其是尤其是尤其的渗透性,并取代了尤其的渗透性,并取得S和OS治疗。此外,OS处理有效地增加了可用的钾和可用的磷含量,并减少了三相R型。有机肥料和稻草的应用有效地优化了土壤结构,尤其是OS处理。与CK,O,S和OS治疗相比,氨氧化古细菌(AOA)的丰度较高,并进一步增强了α多样性和较低的氨氧化细菌(AOB)和NIRK -,NIRK-,NIRS-和Nosz -nosz -Type denitpe denitpe denitpe。AOA和NIRK分别是氨氧化过程和亚硝酸盐还原过程的关键驱动因素。同时,有机肥料和稻草的施用调节了硝基磷酸盐(AOA),γ-杆菌(NIRK和NIRS),α),甲状腺酸细菌(NIRK)和贝protebacteria(Nirk)和β(Nirs)(NIRS(NIRS)。有机肥料和稻草通过增强硝化和反硝化微生物群落中的含量丰富,返回土壤结构。在一起,OS治疗是一种合适的稻草返回实践,用于优化中国东北部农田生态系统的营养平衡。但是,这项研究并未确定如何在有机肥料应用和稻草返回下减少传统的氮肥施用;因此,我们旨在在未来的工作中进行相关研究。
摘要:定性和定量评估评估液体储罐的结构脆弱性。液体储罐通常是在坚硬土壤的区域建造和操作的,以最大程度地减少构成影响。但是,其中许多关键结构都在具有软土的沿海地区。这项研究进行的研究需要在各种条件下准确地对有限元的方法进行精确模拟半植物混凝土储罐的地震行为,包括改变水位和土壤特性。该研究通过动态分析矩形半埋水罐进行了流体结构和土壤 - 结构相互作用,并比较其不同的参数。它还确定了储罐中液体泄漏概率的敏感区域。将建模与日本振动能力诊断表中的定性评估进行了比较。结果表明,与膨胀关节相邻的壁中的拉伸应力大于在所有情况下壁中的相应应力。在土壤类型的动态分析中,表面的压力随水高的增加而增加。对定量和定性评估结果的比较表明,储罐可能在膨胀关节中的软土中泄漏。
摘要。北极变暖会加速融雪,在早春和澳大利亚末更频繁地揭露浅层或没有雪覆盖的土壤表面。FTC通过增加或减少溶解的有机碳(DOC)的量来影响北极土壤C动力学;但是,基于机理的DOC变化的解释认为其他土壤生物地球化学特性是有限的。为了了解FTC对北极土壤反应的影响,我们设计了来自阿拉斯加的表面有机土壤的缩影,并研究了几种土壤生物地球化学的变化,用于在-9.0±0.3°C时连续冻结的七个连续温度波动,并以6.2±0.3°C融化为12 h。ftc显着改变了以下土壤变量:土壤CO 2的生产(CO 2),DOC和总疾病氮(TDN)含量,两个DOC质量指数(SUVA 254和A 365 / A 254),微凝集物(MicroAggregate)(53-250 µm)(53-250 µm)分布和小型Mesopore(53-250 µm);多变量统计分析表明,FTCS改善了微聚集物和小型中孔的土壤结构,从而促进了土壤微生物的DOC分解以及FTCS的DOC数量和质量变化。这项研究表明,FTCS增加了土壤CO 2的产生,表明FTC影响了DOC的性质,而没有负面影响微生物活性。土壤微聚集通过FTC增强,随后的微生物活性和小型孔比例的折痕可以促进DOC分解,从而减少DOC数量。这项研究提供了一种基于机制的插入性,即FTC如何通过结合结构变化和微生物反应来改变活性层中有机土壤的DOC特征,从而提高了我们对北极土壤C动力学的理解。
土壤微生物与土壤中发生的许多过程密切相关,包括向植物供应养分,通过生长激素的产生来刺激植物的生长,控制植物病原体的活性,维持土壤结构的活性,并促进无机污染物的浸出和矿物质污染物的矿物质(beave and in。 2000; Hayat,Ali,Amara,Khalid和Ahmed,2010年;这些微生物社区具有巨大的新陈代谢和生理性质,这使它们能够在土壤环境中生活,适应和扩散,这些土壤环境也表现出极高的结构和化学异性恋(Madigan,Clark,Clark,Stahl,Stahl,&Martinko,2010年)。尽管在肥沃的土壤中细菌丰度较高,但细菌仅占土壤表面的一小部分(Young,Crawford,Nunan,Otten,Otten和Spiers,2008年)。在土壤中,微生物倾向于聚集(Ekschmitt,Liu,Vetter,Fox和Wolters,2005年),在非常小的土壤中形成微生物热点(<1 cm 3)。在评论中,Kuzyakov和Blagodatskaya(2015)认为,大多数生物地球化学过程都在这些热点中进行。这种热点本质上是短暂的,并且来自物理,化学和微生物过程之间的复杂相互作用。这种活动热点的例子包括根际,碎屑和土壤骨料表面。微生物活性的热点不存在。上述过程需要各种条件的托管。在这些热点示例中,根际是最动态的,热点持续日子,而与土壤结构相关的热点可以更持久,并且可以持续几个月。土壤孔在形成诸如土壤结构之类的热点的形成中起着重要作用,形成了相互联系的网络,通过该网络,包括氧的扩散,酶的运输以及分离的有机物,细菌的迁移率和细菌之间的相互作用。许多研究人员在微生物量表上观察到细菌分布中的空间模式(Kizungu等,2001; Nunan,Wu,Young,Crawford,&Ritz,2003;VieubléGonod,Chadoeuf,Chadoeuf和Chenu,&Chenu,2006年)。,例如VieubléGonod等。(2006)观察到土壤中2,4-D(2,4二氯苯氧基酸)的矿化的异质模式,从田间到微栖息地量表时的可变性增加。