grenadier p 2 1/2 加仑 7 1/2 磅 7 24 1/2 9 2a mb810 是的 cosmic 2 1/2e 2 1/2 磅 5 1/2 磅 3 14 3/4 5 3/4 1a-10bc mb817* 是的 cosmic 5e 5 磅 10 磅 4 1/4 15 1/4 7 1/4 2a-10bc mb818 是的 cosmic 5x 5 磅 10 磅 4 1/4 16 1/2 7 1/4 3a-40bc mb818 是的 cosmic 6e 6 磅 12 磅5 16 7 3/4 3a-40bc mb808 是的宇宙 10e 10 磅 18 1/4 磅 5 21 7 3/4 4a-80bc mb846 是的宇宙 20e 20 磅 39 磅 7 21 1/4 10 1/4 20a-120bc mb810 是的哨兵 5 5 磅 14 磅 5 1/4 17 3/4 8 1/4 5bc mb862 是的哨兵 10 10 磅 28 1/4 磅 7 24 12 10bc mb810 是的哨兵 15 15 磅 37 3/4 磅7 30 12 10bc mb864 是 sentinel 20 20 磅 50 3/4 磅 8 30 13 10bc mb811 是 galaxy 2 1/2 2 1/2 磅 5 1/2 磅 3 14 3/4 5 3/4 10bc mb817* 是 galaxy 5 5 磅 9 磅 4 1/4 15 1/4 5 1/2 10bc mb818* 是 galaxy 5 1/2 5 1/2 磅 10 3/4 磅 4 1/4 16 1/2 7 1/4 40bc mb818 是 galaxy 6 6 磅 13 磅5 16 1/4 8 1/2 40bc mb808 是 galaxy 10 10 磅 18 3/4 磅 5 21 8 1/2 40bc mb846 是 galaxy 20 20 磅 38 1/2 磅 7 24 10 1/4 120bc mb810 是 mercury 2 1/2 2 1/2 磅 6 1/4 磅 3 14 7/8 6 1/8 2bc mb817* 是 mercury 5 5 磅 10 磅 4 1/4 16 1/2 6 1/8 5bc mb818 是 mercury 11 11 磅 23 磅7 1/4 20 1/2 9 1/4 1a-10bc mb822 是 水星 15 1/2 15 1/2 磅 26 1/2 磅 7 1/4 20 1/2 9 1/4 2a-10bc mb822 是 土星 15 6 升 30 磅 7 19 1/2 11 k mb810 -- 土星 25 2 1/2 加仑 25 磅 7 25 11 k mb810 --
Terri Chan(波音商用飞机) Terri 是波音商用飞机产品开发部门的高级系统工程师,专注于通过动态功能建模实现生命周期内的架构集成。她拥有超过二十年的经验,从 JPL 的卡西尼号:土星任务计划开始,到空军卫星控制网络的未来网络架构集成商。Terri 参与了军事项目的产品生命周期,从概念设计到集成/测试和运营。她还曾担任竞争情报分析师,为高管提供咨询,其中企业的模型能力基准测试在当前的 MBE 转型战略中发挥了关键作用。意见书 Terri Chan 是主持人。Terri 从事航空航天和国防工业的商业工作,带来运营和维持视角,而不是产品开发。
太空探索领域的科学和技术事件编年史提供了有用的视角。对于我们这些从事这些活动的人来说,它提供了国内外迅速发展的事件的万花筒。对于其他对太空探索感兴趣的人,它有助于提供一种节奏感,并更清楚地认识到真正的成就以及未来的更伟大的事情。1961 年的事件交织着过去和未来。今年里程碑的基础是几年前奠定的。探险者 IX、X 和 XII 的科学发现;艾伦·B·谢泼德和维吉尔·I·格里森的亚轨道水星飞行;X-15 火箭研究飞机达到接近设计速度(6 马赫)和高度(50 英里);Tiros 卫星对全球天气预报的影响;土星助推器的成功飞行
Teledyne Relays 早期参与太空飞行应用,这使我们能够参与载人航天的许多重大成就。我们的机电继电器和 RF 同轴开关曾经用于主要运载火箭,目前仍在使用;Delta III、Arian IV、Arian V 和 VEGA 计划。此外,我们的继电器还参与近太空和深太空探索,机电继电器目前在火星探测器上漫游火星表面,并在火星科学实验室上前往红色星球。我们的机电继电器目前正在卡西尼号航天器上绕土星运行,我们的 RF 同轴开关正在新视野号航天器上前往冥王星。除了参与无人驾驶计划外,我们还提供用于载人计划的高可靠性产品。我们的机电继电器用于国际空间站的各个组件,我们的射频同轴开关在航天飞机的通信系统中发挥了重要作用。
布里格斯托克温暖空间 - **将于 2025 年 1 月 9 日恢复。** 2025 年 1 月天空指南祝大家新年快乐,希望今年的夜空比去年更加晴朗。月亮将在 13 日为满月,29 日为新月。行星:整个月从我们的位置都看不到水星。金星将在傍晚时分在西南方可见,并在 3 到 4 小时后落下。火星将整个月都可见,在午夜时分从东北偏东升起到南方约 60° 的高度,然后消失在黎明中。木星也将整个月都可见,傍晚时分从东南偏东升起到南方约 59°,并在清晨在西北方落下。土星将整个月在傍晚时分在西南方升起,并在 2 到 3 小时后落下。天王星将在傍晚时分在东南偏南方向高空约 55° 处可见(需要双筒望远镜或小型望远镜),并在月初清晨落下,月底午夜左右落下。海王星也将在傍晚时分在西南偏南方向 30° 处可见(需要双筒望远镜或小型望远镜),并在大约 4 小时后落下。10 日,月亮、木星和星团 M45(昴宿星团或七姐妹)将在傍晚时分在西南方彼此靠近。然后在 14 日,月亮和火星将在清晨时分在西南方彼此靠近。金星和土星将在 18 日至 20 日傍晚时分在西南方彼此靠近,但会在 21:00 之前落下。 30 日,巨蟹座的蜂巢星团 (M44) 将在午夜时分位于南方 57° 左右。该星团距离我们 577 光年,包含约 1000 颗恒星,但并非所有恒星都可用肉眼看到。最好使用双筒望远镜观看,最亮的恒星形成蜂巢形状,因此得名。晴朗的天空。彼得
o 或许,人类从未有过像阿波罗 8 号这样完美的计划性冒险,能够获得如此多的赞誉。如果说圣诞节期间的绕月任务是按计划进行的,那将是轻描淡写。NASA 团队的精湛表现不仅受到政客、诗人和媒体的称赞,也受到科学家和工程师的称赞,这些人能够理解其中涉及的一些重大技术复杂性。即便如此,许多评论家还是倾向于简化技术细节,可能是因为他们要么不理解这些技术细节,要么因为他们觉得有必要让公众更容易理解这一成就。有时,他们让成功看起来似乎主要取决于弹道学:正确瞄准巨大的土星五号火箭,然后相信牛顿。或者,在其他时候,传达的主要印象是一次奇妙的观光旅行。好吧,它就是这样,但远不止于此,除此之外,它还是对最精确的一次主要测试
摘要 生命没有简化的定义,因此生物的外观、行为和移动方式是识别外星生命的最明确方法。太阳系其他地方的生命可能是微生物,但从未有能够对原核生命进行成像的显微镜在着陆器任务中飞向可居住星球。尽管如此,已经开发出适合行星探索的高分辨率显微镜。传统光学显微镜、干涉显微镜、光场显微镜、扫描探针显微镜和电子显微镜都是检测火星和木星和土星卫星上现存微生物的可能技术。本文首先对寻找原核生命所涉及的挑战进行了一般性讨论,然后回顾了已经飞行的仪器、已选择飞行但未飞行或尚未飞行的仪器,以及尚未选择飞行的用于生命探测的有巨大前景的开发技术。
SPACE 团队与新德里国家科学中心和新德里尼赫鲁天文馆合作,于 2023 年 2 月 5 日和 6 日晚上在红堡的 Gyan Path 成功举办了“Astro Night Sky Tourism - A 观星活动”。该活动是 Azadi Ka Amrit Mahotsav 的一部分,这是印度政府为庆祝和纪念独立 75 周年以及其人民、文化和成就的辉煌历史而发起的一项倡议。我们都是宇宙的一部分,渴望更好地了解它;本着同样的精神,该计划的目标是将观星和天文学的乐趣带给普通民众。由 SPACE India 创始人 Sachin Bahmba 博士领导的太空团队热情地尽最大努力举办了这次活动。数百名游客,包括小孩,甚至 iAstronomer 俱乐部的成员都涌向了会场。通过 200 毫米牛顿反射望远镜,公众可以看到月球、木星、土星和火星的迷人景象。
David T. Young Young 博士的主要科学兴趣和贡献集中在研究和了解太阳系等离子体的化学成分以及成分对行星磁层动力学的影响。 为了追求这些兴趣,Young 博士领导或参与了几种广泛用于研究空间等离子体的尖端光谱仪的设计和开发。 基于他的仪器进行的实验有助于更好地了解陆地、行星和彗星磁层。 20 世纪 70 年代,Young 博士表明地球磁层的成分与太阳周期的紫外线辐射密切相关。 20 世纪 80 年代,他的工作集中于研究赤道磁层中发现的自生离子回旋波对重离子(He + 和 O + )的加速。 20 世纪 90 年代,他的工作主要集中于开发他正在开发的仪器的测量技术。到了 21 世纪初和 21 世纪 10 年代,杨博士将注意力转向了土星磁层的成分相关复杂性。他发现冰卫星释放的“水离子”主导着土星的磁层。他还致力于了解土卫六复杂的大气层和电离层,它们主要由带正电和负电的重碳分子组成。正是这些分子形成了覆盖土卫六表面的气溶胶颗粒。杨博士的实验室研究推动了尖端离子质谱技术的发展,开辟了新的实验可能性。他是第一个将质谱仪的能量范围和灵敏度提高了几个数量级的人,例如极地任务中的热离子动力学实验。他的工作导致了能量谱仪的小型化和性能的提高,例如罗塞塔号任务中的离子电子传感器,以及质谱仪,例如深空一号上的行星探索等离子体实验。 2002 年,他发明并领导了用于欧罗巴快船任务的超高分辨率 MASPEX 质谱仪(性能超越大多数实验室仪器)的早期开发。1988 年,杨博士构思了卡西尼等离子体光谱仪 (CAPS),这是一套集成的三台仪器套件,用于卡西尼号土星任务。由于他在伯尔尼大学期间在欧洲拥有长达十年的经验,他能够组建和管理一个团队,该团队最终包括来自美国和五个欧洲国家的 170 名科学家和工程师。1990 年,NASA 选择 CAPS 并由杨博士担任首席研究员,部分原因是欧洲团队的贡献为 NASA 在整个任务期间节省了 1500 万美元(以 2022 年的美元计算)。2019 年,卡西尼项目管理部门告知他,CAPS 的数据为 500 多篇出版物和 26 篇博士论文做出了贡献。在他的职业生涯中,杨博士Young 为实验空间科学界做出了贡献,他在四所机构设计和建造了高精度校准系统:莱斯大学、伯尔尼大学、洛斯阿拉莫斯大学和西南研究院的两所机构。这些系统已用于各种项目,包括阿波罗月球表面实验包、欧空局的罗塞塔号 67P/Churyumov-Gerasimenko 任务和卡西尼号。除了实验空间科学工作外,Young 博士的兴趣还包括教育下一代。为此,他教授了磁层物理和伽马射线光谱学课程(伯尔尼大学),以及空间仪器和航天器设计课程(伯尔尼大学)
在不同行星大气环境下对风成过程(风吹粒子)进行实验和模拟,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 行星科学部支持(2014 年之前,PAL 由 NASA 行星地质和地球物理学 (PG&G) 计划支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州坦佩的亚利桑那州立大学 (ASU) 拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的低压研究压力室之一。PAL 能够在受控实验室条件下对风成过程进行科学研究,并能够为 NASA 的太阳系任务测试和校准航天器仪器和组件,包括那些需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞