越来越多的实验证据表明,抗癌和抗菌药物本身可能通过提高可突变性来促进耐药性的获取。成功控制不断发展的人群要求将这种控制的生物学成本识别,量化并包括在进化知情的治疗方案中。在这里,我们确定,表征和利用降低目标人口大小和产生治疗引起的救援突变的盈余之间的权衡。我们表明,在中间剂量下,治愈的可能性最大,低于药物浓度产生最大种群衰减,这表明在某些情况下,通过较少积极的治疗策略可以大大改善治疗结果。我们还提供了一般性的分析关系,该关系将生长速率,药效学和依赖性突变率与最佳控制定律联系起来。我们的结果强调了基本生态进化成本的重要但经常被忽略的作用。这些成本通常会导致情况,即使治疗的目的是消除而不是遏制,累积药物剂量也可能是可取的。综上所述,我们的结果加剧了对管理侵略性,高剂量疗法的标准做法的持续批评,并激发了对诱变性和其他隐性疗法的其他隐性抵押成本的进一步实验和临床投资。
头脑风暴方法涉及使用传统的头脑风暴为分类法创建问题列表。这形成了一种自下而上的方法,通过根据日常驾驶经验和更模糊的事件报告预测可能具有挑战性的事情。建模练习采取了更多自上而下的方法,考虑系统如何适应分类练习预测的一些挑战。理想情况下,两者应该在中间相遇,但是问题的分组不一定需要直接映射到应对策略,只要有全面覆盖,即即使策略是避免,也有一个机制可以处理每个问题,方法是不允许车辆暴露于该问题。举例来说,高速公路导航类型的功能通常不会被期望应对铁路平交道口的仲裁,因此尽管系统中没有为此设计的明确软件算法,但仍有覆盖范围。如何确保该功能仅在高速公路上使用,而不在次要道路上使用(可能有平交道口等许多其他道路)将成为该功能模型论证的一部分,并且可能包括仅依靠驾驶员仅在设计工作的地方使用它的策略,例如通过使用 GNSS/GPS 和地理围栏来主动防止它在其他地方使用。
头脑风暴法涉及使用传统的头脑风暴法为分类法创建问题列表。这形成了一种自下而上的方法,通过根据日常驾驶经验和更模糊的事件报告预测可能具有挑战性的事情。建模练习采取了更多的自上而下的方法,考虑系统如何适应分类练习预测的一些挑战。理想情况下,两者应该在中间相遇,但是问题的分组不一定需要直接映射到应对策略,只要有全面覆盖,即有一种机制可以处理每个问题,即使策略是避免,通过不让车辆暴露于该问题。例如,高速公路驾驶员类型的功能通常不会被期望应对铁路平交道口的仲裁,因此尽管系统中没有为此设计的明确软件算法,但仍有覆盖范围。如何确保该功能仅在高速公路上使用而不是在次要道路上使用(可能有平交道口等)将成为该功能模型论证的一部分,并且可能包括仅依靠驾驶员仅在其设计工作的地方使用它的策略,例如通过使用 GNSS/GPS 和地理围栏来主动防止它在其他地方使用。
越来越多的实验证据表明,抗癌和抗菌药物本身可能通过提高可突变性来促进耐药性的获取。成功控制不断发展的人群要求将这种控制的生物学成本识别,量化并包括在进化知情的治疗方案中。在这里,我们确定,表征和利用降低目标人口大小和产生治疗引起的救援突变的盈余之间的权衡。我们表明,在中间剂量下,治愈的可能性最大,低于药物浓度产生最大种群衰减,这表明在某些情况下,通过较少积极的治疗策略可以大大改善治疗结果。我们还提供了一般性的分析关系,该关系将生长速率,药效学和依赖性突变率与最佳控制定律联系起来。我们的结果强调了基本生态进化成本的重要但经常被忽略的作用。这些成本通常会导致情况,即使治疗的目的是消除而不是遏制,累积药物剂量也可能是可取的。综上所述,我们的结果加剧了对管理侵略性,高剂量疗法的标准做法的持续批评,并激发了对诱变性和其他隐性疗法的其他隐性抵押成本的进一步实验和临床投资。
主要意见 一般性意见 - 目标 A(M)C 一贯使用“should”而非“shall”来表示指导。但是,明确的目标要求更明确地向申请人传达适航当局希望实现的目标。建议在目标中使用与 ED-80/DO-254、ED-12C/DO-178C 和 MCP 的 CRI/IP 中规定的目标一致的形式,而不是使用“should”语言。为了将建议的改写保留在一条意见中,所有目标定义文本的极其有限的替换如下所示。请注意,只陈述目标的一部分来显示替换,其中未更改的文本在中间表示为“...”和“...等”。目标 CD-1 对于每台定制设备,申请人应在 PHAC 或任何相关文件中记录文件:…等。目标 CD-2 申请人应在 PHAC 或任何其他适当的硬件计划中提出一个流程,以开发包含以下内容的简单定制设备:…等。目标 CD-3 申请人应按照 ED-80/DO-254 验证流程(ED-80/DO-254,第 6 和 10 节)验证所有定制设备要求。…对于 DAL A 和 B 开发,验证活动应独立进行。目标 CD-4 对于硬件 DAL A 或 DAL B,申请人应审查详细设计以证明…等。目标 CD-5
生态系统经常证明许多物种以有限的含量为有限的物种,具有明显的稀有性和丰富的模式。这种共存的潜在驱动力是环境波动,随着时间的流逝,它们有利于不同的物种。但是,如何在现有的消费者资源模型中包括和处理这种时间可变性仍然是一个开放的问题。在这项研究中,我们研究了随机消费者资源框架内代谢策略中相关时间波动在代谢策略中的作用,这反映了响应环境的物种行为的变化。在某些条件下,我们能够通过路径整体形式来分析物种丰富的分布。我们的结果表明,随机动态代谢策略诱导了社区结构,这些策略与经验生态观察更加紧密地保持一致,并有助于违反竞争性排斥原则(CEP)。在中间竞争强度下,CEP违规程度最大化,导致中间竞争假设。此外,当存在非中性效应时,对于波动振幅的中间值,可以实现最大的生物多样性。这项工作不仅挑战了传统的生态范式,而且还建立了一个强大的理论框架,用于探索时间动态和随机性如何推动生物多样性和社区。
研究区域的岩石主要在SɵkineTerrane(SɵKinia)中,这是一种古生代到中生代岛弧,在最新的三叠纪到早期的侏罗纪,然后在中间侏罗纪的北美占领之前变形。最新的三叠纪至早期的侏罗纪褶皱与岩浆和沉积的裂缝相同,至少跨度为30 m.y。(图1)。这种畸形在整个哥伦比亚西北部的哥伦比亚西北部记录下来,已被归结为育空 - 塔纳纳和sɵkineTerranes之间的碰撞(Nelson等,2022)。随后在北美祖先的地面上,由地图区域的北部侏罗纪褶皱带记录了,其中包括两个区域北倾式推力,鲑鱼国王鲑鱼和Kehlechoa断层。在国王鲑鱼断层的悬挂墙中是Cache Creek Terrane的岩石,它代表了上部细分区域蛇片,Mafim and BimodalPrimiɵve-coceanic Arc的连续相连,海洋岛屿型基板,以及schiairizza,schiairizza,2012年;白马槽的单位,它代表了最新的三叠纪至侏罗纪早期的同步重叠组合。向南稍稍稍微向南,白马虽然在Kehlechoa断层的悬挂墙中的单位在结构上与SɵKinia并列。
我们研究了杂质在混沌介质中移动的随机幺正电路模型。介质和杂质之间的信息交换通过改变杂质的速度vd (相对于信息在介质中传播的速度v B )来控制。在超音速以上,vd > v B ,信息在进入介质后无法流回杂质,由此产生的动力学是马尔可夫的。在超音速以下,vd < v B ,杂质和介质的动力学是非马尔可夫的,信息能够流回杂质。我们表明,这两个状态由连续相变分隔,其指数与介质中算子的扩散扩展直接相关。通过监测非时间序相关器(OTOC),在中间时间替换杂质的场景中证明了这一点。在马尔可夫阶段,来自介质的信息无法转移到被替换的杂质上,表现为没有显著的算子发展。相反,在非马尔可夫阶段,我们观察到算子获得了对新引入的杂质的支持。我们还使用相干信息来表征动态,并提供两个解码器,可以有效地探测马尔可夫和非马尔可夫信息流之间的转换。我们的工作表明,马尔可夫和非马尔可夫动态可以通过相变来分离,我们提出了一种观察这种转变的有效协议。
图1。进化多目标优化为多层设计提供了合适的框架。在这项工作中,我们研究了如何通过多物镜优化方法将机器学习模型(例如PMPNN,AlphaFold2/af2rank和ESM-1V)直接集成到蛋白质序列设计中,称为非主体分类遗传算法II(NSGA-II)。左:首先,通过突变操作员提出了新的设计候选。在这里,该操作员由ESM-1V组成,ESM-1V用于对残基位置进行排列,以及用于重新设计最小Nativelike-NativelikeTose的ProteinMPNN(PMPNN)。中间:然后使用源自AlphaFold2和PMPNN置信度指标的目标函数对设计候选者进行评分。右:最后,得分的候选人被分类为连续的帕累托阵线(这里编号为F1至F5),NSGA-II从最佳战线中选择了最佳战线的候选人。为了证明该框架的有效性,我们对RFAH的多层设计问题进行了深入的分析,RFAH是一种小的折叠式蛋白质,其C末端结构域可以在全-αRFAHα状态和全βrfahβ状态之间互连。在中间面板的两个RFAH状态的卡通表示中,以绿色表示可设计的位置(残基119至154);请注意,N端结构域在RFAHβ态的带状表示中未显示(请参见方法)。
在所有活细胞中,基因组 DNA 都是通过与专用蛋白质相互作用和/或形成多聚螺旋而压缩的。在细菌中,DNA 压缩是动态实现的,与密集且不断变化的转录活性相协调。H-NS 是一种主要的细菌类核结构蛋白,由于其与 RNA 聚合酶的相互作用而特别受关注。H-NS:DNA 核蛋白丝抑制 RNA 聚合酶的转录起始。然而,H-NS 沉默的基因可以通过来自邻近区域的转录激活这一发现表明,延长的 RNA 聚合酶可以分解 H-NS:DNA 丝。在这项研究中,我们提供了证据表明转录诱导的反沉默不需要转录到达沉默基因;相反,它在远处发挥作用。通过在中间片段内引入 DNA 旋转酶结合位点可抑制反沉默,这表明长距离效应是由转录驱动的正 DNA 超螺旋向沉默基因扩散引起的。我们提出了一个模型,其中 H-NS:DNA 复合物在体内在负超螺旋 DNA 上形成,H-NS 桥接了多面体的两条臂。相邻转录产生的正超螺旋的旋转扩散将导致 H-NS 结合的负超螺旋多面体“展开”,从而破坏 H-NS 桥并释放 H-NS。