Ronald K. Bartley 上校,美国空军飞行大学 Eric Braganca 中校,美国空军海军航空站,马里兰州帕塔克森特河 Kendall K. Brown 博士 美国国家航空航天局马歇尔太空飞行中心 Steven D. Carev 上校。美国空军,已退役,阿拉巴马州达芙妮 Clayton K. S. Chun 博士 美国陆军战争学院 Mark Clodfelter 博士 国家战争学院 Conrad Crane 博士 美国陆军军事历史研究所所长 Michael D. Davis 上校,美国空军空军研究所 Dennis M. Drew 上校,美国空军,已退役,美国空军高级航空航天研究学院 Charles J. 少将Dunlapjr.,美国空军 五角大楼 Stephen Fought 博士 美国空军航空战争学院(名誉教授) Richard L. Fullerton 上校,美国空军 美国空军学院 Derrill T. Goldizen 中校,博士。美国空军,已退休 马萨诸塞州韦斯特波特角 W. Michael Guillot 上校,美国空军大学 John F. Guilmartin Jr. 博士,俄亥俄州立大学 Amit Gupta 博士,美国空军航空战争学院 Grant T. Hammond Dean 博士。北约国防学院 Thomas Hughes 博士,美国空军高级航空航天学院 J. P. Hunerwadel 中校,美国空军,Redred LeMay 理论发展与教育中心 Mark P. Jelonek 上校,美国空军 五角大楼 John Jogerst 上校,美国空军。已退休 佛罗里达州纳瓦拉 Charles Tusdn Kamps 先生,美国空军空军指挥参谋学院
本信息为直升机应用领域的航空公司雇主提供有关技术、组织和人员措施的指导和建议,以便他们履行法定职业安全和健康保护条例或事故预防条例规定的职责。它展示了有效避免或尽量减少工伤事故、职业病和与工作相关的健康危害的方法。
摘要 - 这项研究的重点是分析Chaviña湿地的碳储存能力,目的是估计空中生物量中存在的碳储备。为此,使用0.25 m 2 Quadrat随机获得17个样品。随后,每个样品在60°C的温度为24至72小时的温度下在烤箱中进行干燥过程,直到它们达到恒定的重量为止。接下来,应用了Walkley和Black方法来确定每个样品中的碳含量。最后,进行了计算以获取存储在空中生物质中的碳库存。此外,进行了统计测试,以确定地上生物量中碳百分比与沼泽水平(高,中和低)存储在地上生物量中的碳之间的差异。获得的结果表明,三个沼泽水平之间的碳库存没有显着差异。此外,可以量化湿地生物量存储总计18 628 TC和隔离器70 904 TCO 2。这一发现将Chaviña湿地作为重要的碳储层的相关性。
非常高。距离观测的标准偏差 c 2 rnm 已得到确认,并可定期获得。从测距计算位置本质上是最小二乘距离交会的直接程序。定位精度主要取决于卫星星座的几何形状。今天,空间部分已基本完成,几乎可以在任何地点和任何时间观测到至少六颗同时可见的 GPS 卫星的星座,给出的 PDOP 值 S 6。因此,除了系统误差外,内部定位精度预计在 1 到 2 厘米的数量级(标准坐标误差)。很难通过经验检查和验证如此高精度的机载定位。但有来自弗莱福兰空中三角测量(Fries,1991)的测试结果,经验证实了动态航空相机定位的精度约为 2 厘米。根据现有经验,差分载波相位观测的固有精度几乎不受 SA 的影响。
为 ATC 学生设定了各种教学目标,以帮助提高他们的信心。模拟器训练包括紧急程序和援助、特定地点的定位、用语、程序和协调、团队合作、跑道标记和飞行数据。因此,模拟器训练有助于建立信心,因为 ATC 学生要处理高强度的交通问题和复杂的跑道配置(Taylor 等人,2)。模拟器训练很重要,因为它使管制员具备必要的技能、准备和信心来处理高压情况,例如各种天气条件下的尾流湍流。ATC 学生还学习如何处理交叉跑道和平行跑道上同时到达和离开的情况。模拟器训练通常教授预期的分离、精确的计时和任务的优先级。这些模拟训练节点确保管制员可以使用有节奏的无线电传输,同时使用最小跑道离场分离。模拟训练作为空中交通管制训练的教学补充,有助于培养信心。基于模拟器的训练提高技能
Ronald K. Bartley 上校,美国空军飞行大学 Eric Braganca 中校,美国空军海军航空站,马里兰州帕塔克森特河 Kendall K. Brown 博士 美国国家航空航天局马歇尔太空飞行中心 Steven D. Carev 上校。美国空军,已退役,阿拉巴马州达芙妮 Clayton K. S. Chun 博士 美国陆军战争学院 Mark Clodfelter 博士 国家战争学院 Conrad Crane 博士 美国陆军军事历史研究所所长 Michael D. Davis 上校,美国空军空军研究所 Dennis M. Drew 上校,美国空军,已退役,美国空军高级航空航天研究学院 Charles J. 少将Dunlapjr.,美国空军 五角大楼 Stephen Fought 博士 美国空军航空战争学院(名誉教授) Richard L. Fullerton 上校,美国空军 美国空军学院 Derrill T. Goldizen 中校,博士。美国空军,已退休 马萨诸塞州韦斯特波特角 W. Michael Guillot 上校,美国空军大学 John F. Guilmartin Jr. 博士,俄亥俄州立大学 Amit Gupta 博士,美国空军航空战争学院 Grant T. Hammond Dean 博士。北约国防学院 Thomas Hughes 博士,美国空军高级航空航天学院 J. P. Hunerwadel 中校,美国空军,Redred LeMay 理论发展与教育中心 Mark P. Jelonek 上校,美国空军 五角大楼 John Jogerst 上校,美国空军。已退休 佛罗里达州纳瓦拉 Charles Tusdn Kamps 先生,美国空军空军指挥参谋学院
∗ 本研究的早期版本已收录于 2018 年 9 月 11 日至 13 日在英国兰卡斯特大学举行的 OR60 年度会议的主题论文集(Shone 等人 (2018))。第 2.2、2.3、2.4 和 3.1 节包含会议论文的一些材料。然而,本手稿作为一个整体代表了上述会议贡献的重大扩展和增强。† 通讯作者
本杰明·S·兰贝斯 红外力量与信息力量相结合,可以说已成为大多数战争环境下的主导力量。自第二次世界大战以来,红外力量为美国和盟军地面部队提供了不受上空干扰的行动自由。现在,通过技术发展和精明的作战概念的结合,如果能够明智地利用眼前的可能性,红外力量可能会成为国家力量中更为关键的因素。 过去十年,许多空中力量手段从高级开发演变为作战使用。这些系统主要集中在隐身、精确防区外攻击和增强信息可用性方面。1991 年的海湾战争中,这些能力首次在战斗中结合在一起。在技术、条令、作战概念和领导力前所未有的融合下,联军迅速取得了不容置疑的空中优势。今天,无论是已经拥有的还是即将出现的航空航天新技术,都有望带来更为剧烈的变化,进一步拉大拥有这些技术的国家与未拥有这些技术的国家之间的差距。就系统的技术性质而言,这些发展很可能导致程度上的变化,而不是性质上的变化。即便如此,从操作的角度来看,它们预示着质的变化。这些技术分为四类: • 先进平台。F-22 战斗机是第一款下一代战斗机
摘要 - 空中客车公司的基于地面的晚期超导和低温实验式动力列车演示器(Ascend),旨在证明在未来电动飞机上作为突破性和超导性动力总成作为突破性电气推进解决方案的潜在和可行性。在推进链中使用直接电流分配网络将500 kW的电源从源传递到电转换器,这将电源转换为交替的电压/电流以驱动超导电动机。通过在相对较低的电压下操作,为安全和安装原因选择了1,700 A和300 V的工作点。直流电流(DC)的升线将由一对高温超导的CORC电缆形成,该电缆插入了10米长的狭窄低温恒温器中,从而产生紧凑而轻量级的溶液。逆变器和电动机之间的2米长的电流(AC)总线由三相CORC电缆形成。将概述与500 Hz操作相关的挑战,在500 Hz操作中,将概述电缆中的交流损耗与系统的大小和质量之间的平衡。AC和DC总线包括几种将液氮冷却电缆与其他系统组件连接起来的设备,这些设备在室温发生器的情况下以明显更高的温度运行。因此,这些设备包括传导冷却的电流导线,这些导线尺寸为最小化,以最大程度地减少从温暖环境到寒冷环境的热水。将提供AC和DC总线以及连接设备的设计的概述,并将概述一些设计和操作挑战。
摘要:深度强化学习 (DRL) 近年来因其能够解决以前由于非线性和高维性而无法解决的决策问题而得到广泛采用。在过去的几年中,它已在空中交通管制 (ATC) 领域得到推广,特别是在冲突解决方面。在本文中,我们对现有的冲突解决问题 DRL 应用进行了详细回顾。本调查基于以下几个部分进行了全面回顾:(1) 冲突解决的基础、(2) DRL 的发展,以及 (3) DRL 在冲突解决中的各种应用,按环境、模型、算法和评估指标进行分类。最后,进行了开放式讨论,可能提出了使用 DRL 进行冲突解决的一系列未来研究方向。本评论的目的是为未来更有意义的研究提供指导点。