和创业活动。关于 FDP:这项关于计算机视觉、医学成像和物联网应用的人工智能 (AI) 的教师发展计划 (FDP) 将帮助教育工作者和研究人员了解人工智能基础知识以及它如何应用于具有多种安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,重点是将人工智能和物联网用于医学成像,这有助于诊断、医疗保健、农业、零售和监控系统。人工智能在计算机视觉中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用人工智能和不同算法的实用技能。到课程结束时,参与者将准备好将人工智能工具整合到他们的工作中,提高他们用现代技术教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:•物联网架构、通信协议、计算机视觉简介、大数据分析、IIOT、生物医学和医学图像分析应用。•机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。•深度学习方法简介,以及基于DL的其他架构及其应用。•用于计算机视觉、生物识别和医学成像实现的CNN架构。•用于医疗监测、精准农业、医疗诊断、工业应用的AI/IoT。•用于生物医学成像、基于CT扫描/MRI的图像分析、眼底和医学图像分类的AI/ML。•对象检测/跟踪算法,如Yolo等,分割算法,如UNET等。•使用Tensor Flow/PyTorch进行活动/生物识别。•Tensor Flow/Keras/PyTorch/Jupyter和Colab的基础知识。•使用python/MATLAB进行数据预处理和数据可视化。•使用Python/MATLAB进行实践课程。 • 在 Jetson Nano、TX2 和 PYNQ 等硬件平台上实现 CV 和 AI 算法。 • 负责此课程的教师:该课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在该课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。 nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。 这个58岁的研究所每年平均有2000名学生和约150名博士学位。 该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。 NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。1964年成立的Tiruchirappalli国家理工学院是该国最佳的技术机构之一,在NIRF排名2022年的工程类别中排名第8。nit Trichy有17个学术部门,并提供10个学士学位,40个硕士和17个博士学位课程。这个58岁的研究所每年平均有2000名学生和约150名博士学位。该研究所的信用近接近6500 sci索引文章,引用为1,00,000,H索引为105。NIT Trichy拥有一个非常充满活力的校园,具有活跃的IPR牢房,初创企业和孵化中心,创新促进中心,最先进的研究实验室的推力地区卓越中心。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
4. 同行评估和团队成员表现不佳的补救流程:小组练习是企业和学校中最困难的练习之一,尤其是当团队成员位于州/国家的不同地区时。因此,团队经常会遇到各种各样的问题,从过度活跃的参与者到搭便车者。如果您的团队遇到了功能失调的动态,则必须完全记录该过程,以便任何讲师采取缓解措施。如果您觉得您的小组表现不佳,请通过电子邮件直接提醒讲师。虽然小组的 BSG 站点将受到监控,但班级很大,小组很多,表现不佳的情况应该特别指出。您将有机会通过同行评估流程直接影响团队成员的成绩。如有必要,您的团队可以选择“解雇”团队成员。
我们的 LMS 专注于基于项目的学习,可实现知识的实际应用,树立新的教育标杆。它为教师提供强大的支持,具有直观的界面和出色的计算机科学课程所需的基本资源。Cyber Square 不仅仅是一个平台;它是一项面向未来的学习生态系统的投资,可帮助学生和教育工作者在数字时代脱颖而出。
1。认知和情感成熟度:○13岁时,大多数孩子缺乏进行批判性思维,情感调节和冲动控制的发展能力,使其容易受到有害内容,网络欺凌和操纵算法的影响。○研究表明,16岁及以上的儿童表现出更大的韧性和成熟度,以负责任地参与数字空间。2。心理健康风险:○包括ESAFETY专员在内的澳大利亚研究,已将早期接触到社交媒体,青少年的焦虑,抑郁和身体形象问题的水平不断上升。将暴露延迟到至少16个可以减轻这些风险。3。安全性和问责制:○社交媒体平台通常无法充分筛选用户或提供适合年龄的内容适度。更高的最低年龄对平台上的期望更加清晰,以使其安全框架和算法有效地保护年轻受众。
由于电池容量有限,能源效率有效的导航构成了电动汽车的重要挑战。我们采用贝叶斯的方法来对路段的能源消耗进行建模,以进行有效的导航。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种探索策略,例如汤普森采样和上限限制。然后,我们将我们的在线学习框架扩展到多代理设置,在该设置中,多个车辆可适应和学习能量模型的参数。通过分析批处理反馈下的算法,我们分析了汤普森采样,并在单位代理和多代理设置中建立了严格的遗憾界限。最后,我们通过在几个现实世界的城市路网络上进行实验来演示方法的性能。
课程描述人工智能探索及其在学校的实际应用通过演示、实际使用示例、实施工具和资源以及互动活动向您介绍人工智能 (AI) 领域及其在 K-12 环境中的应用。本课程重点介绍人工智能技术的各个方面,这些技术有可能促进和利用学习,并解决学校和社区中的实际问题。作为教育工作者,您还将学习向学生揭示人工智能技术如何融入我们生活的许多不同方面。您将积极参与课程内容,参与在线活动并完成动手作业以应用您的学习。在整个课程中,您将获得可供借鉴的策略,因为您将开发一个基于项目的单元,学生可以在其中应用人工智能来解决问题。
在为期六周的课程中,每个星期六将参加一个60分钟的会议,学生将以高达4人的身份工作。在卡内基学习认证的老师的支持下,学生将审查和练习考试中涉及的概念,例如:代数的心脏解决问题,解决问题和数据分析,提前数学以及数学的其他主题,包括地球和三角学。