用于恢复手机功能的脑机界面(BMI)临床翻译的关键因素将是其任务变化的稳健性。具有功能性电刺激(FES),例如,患者的手将用于在其他相似运动中产生各种力量。为了调查任务变更对BMI性能的影响,我们训练了两个恒河猕猴,用身体的手控制虚拟手,同时我们将弹簧添加到每个手指组(索引或中环或中小型小组)或改变其手腕姿势。使用同时记录的心脏内神经活性,手指位置和肌电图,我们发现跨环境中预测手指运动学和与手指相关的肌肉激活导致预测误差的显着增加,尤其是肌肉激活。但是,关于在线BMI对虚拟手的控制,更改培训任务上下文或在线控制过程中手的身体上下文对在线绩效的影响很小。我们通过表明神经种群活动的结构在新情况下仍然相似,从而解释了这种二分法,这可以在线快速调整。此外,我们发现神经活动在新环境中与所需的肌肉激活成正比移动,可能解释了偏见的运动学预测,并提出了一种可以帮助预测不同幅度肌肉激活的特征,同时产生相似的运动学。
摘要 由于产品频繁变化,大规模定制要求缩短制造系统的响应时间。系统动态性的增加对灵活性提出了更高的要求,尤其是对装配过程,因为复杂性在价值创造的最后一步不断积累。与传统的专用装配线方法相比,灵活且动态互连的装配系统可以满足日益增长的需求。这类系统中的高复杂性和动态环境导致对实时在线控制和调度解决方案的需求。在在线调度的决策中,预测可用操作后果的能力至关重要。在实时环境中,运行大量离散事件模拟来评估操作如何展开需要太多的计算时间。人工神经网络 (ANN) 是一种可行的替代方案,可以快速评估生产状态的潜在未来性能价值,以进行在线生产规划和控制。它们可以预测性能指标,例如在当前生产状态下的预期完工时间。利用人工智能 (AI) 游戏算法的最新进展,创建了一个基于 Google DeepMind 的 AlphaZero 的装配控制系统。具体来说,ANN 被纳入到该方法中,它建议有利的工作路由决策并预测行动的价值。结果表明,训练后的网络预测有利行动的准确率超过 95%,估计完成时间的误差小于 3%。
神经调节和神经反馈是治疗神经相关疾病和障碍的两种替代非药物方法 (Grazzi 等人,2021 年;Hamed 等人,2022 年)。神经调节是指通过应用弱直流电来调节大脑功能 (Lewis 等人,2016 年)。神经反馈是一种心理生理程序,可为受试者提供神经活动模型,旨在对其进行在线控制 (Marzbani 等人,2016 年)。这两种替代方法都已成功应用于多种神经系统疾病,包括帕金森病、慢性疼痛、癫痫、抑郁症、特发性震颤等 (Tsatali 等人,2019 年;Baptista 等人,2020 年;Hamed 等人,2022 年)。这些类型的治疗面临的典型挑战包括数据收集方式、方法效率的提高、反馈信号的可解释性等(Johnson 等人,2013 年;Lewis 等人,2016 年;Marzbani 等人,2016 年;Papo,2019 年)。目前,人工智能 (AI),尤其是机器学习 (ML),可以更好地理解大脑活动,并建立更好的脑机接口 (BCI) 交互机制(Zhang 等人,2020 年)。在神经调节或神经反馈的数据收集和监测阶段整合 AI/ML 可用于神经系统疾病和障碍的早期诊断和准确的非药物治疗。ML 能够分析大量患者信息
摘要 将脑机接口 (BMI) 应用于临床以恢复手部运动功能的一个关键因素是其对任务变化的稳健性。例如,使用功能性电刺激 (FES),患者自己的手将用于在其他方面类似的运动中产生各种各样的力量。为了研究任务变化对 BMI 性能的影响,我们训练了两只恒河猴用它们的物理手控制虚拟手,同时我们在每个手指组(食指或中指-无名指-小指)中添加弹簧或改变它们的手腕姿势。通过同时记录皮层内神经活动、手指位置和肌电图,我们发现在一种环境下训练的解码器不能很好地推广到其他环境下,导致预测误差显著增加,尤其是对于肌肉激活。然而,对于虚拟手的在线 BMI 控制,在线控制期间改变解码器训练任务环境或手的物理环境对在线性能几乎没有影响。我们通过展示神经群体活动的结构在新的环境中保持相似来解释这种二分法,这可以实现在线快速调整。此外,我们发现神经活动会根据新环境中所需的肌肉激活按比例改变轨迹。神经活动的这种转变可能解释了对非背景运动学预测的偏差,并提出了一种特征,该特征可以帮助预测不同幅度的肌肉激活,同时产生相似的运动学。
摘要 目的 . 脑机接口 (BCI) 系统直接从大脑读取和解释大脑活动。它们可以为患有神经退行性疾病或中风的患者提供一种交流或运动的方式。然而,大脑活动的非平稳性限制了在校准会话期间训练的算法向实时 BCI 控制的可靠转移。非平稳性的一个来源是用户大脑对 BCI 输出 (反馈) 的反应,例如,用户是否将 BCI 反馈视为错误。通过考虑这些非平稳性来源,可以提高 BCI 的可靠性。方法 . 在这项工作中,我们展示了一种混合运动想象 BCI 的实时实现,它同时结合了来自运动想象信号和与错误相关的大脑活动的信息,从而从两个来源中受益。主要结果 . 与传统的运动想象 BCI 相比,我们在 12 名参与者的实时 BCI 控制中表现出显着的提高。分类准确度、目标命中率、控制主观感知和信息传输率等方面都有显著改善。此外,我们对记录的 EEG 数据的离线分析表明,与运动想象信号相比,与错误相关的大脑活动提供了更可靠的信息来源。意义。这项工作首次表明,与运动想象分类器相比,与错误相关的大脑活动分类器在使用校准数据进行训练并在在线控制期间进行测试时更加一致。这可能解释了为什么所提出的混合 BCI 可以为有需要的患者提供更可靠的交流或康复方式。
摘要 目的 . 脑机接口 (BCI) 系统直接从大脑读取和解释大脑活动。它们可以为患有神经退行性疾病或中风的患者提供一种交流或运动的方式。然而,大脑活动的非平稳性限制了在校准会话期间训练的算法向实时 BCI 控制的可靠转移。非平稳性的一个来源是用户大脑对 BCI 输出 (反馈) 的反应,例如,用户是否将 BCI 反馈视为错误。通过考虑这些非平稳性来源,可以提高 BCI 的可靠性。方法 . 在这项工作中,我们展示了一种混合运动想象 BCI 的实时实现,它同时结合了来自运动想象信号和与错误相关的大脑活动的信息,从而从两个来源中受益。主要结果 . 与传统的运动想象 BCI 相比,我们在 12 名参与者的实时 BCI 控制中表现出显着的提高。分类准确度、目标命中率、控制主观感知和信息传输率等方面都有显著改善。此外,我们对记录的 EEG 数据的离线分析表明,与运动想象信号相比,与错误相关的大脑活动提供了更可靠的信息来源。意义。这项工作首次表明,与运动想象分类器相比,与错误相关的大脑活动分类器在使用校准数据进行训练并在在线控制期间进行测试时更加一致。这可能解释了为什么所提出的混合 BCI 可以为有需要的患者提供更可靠的交流或康复方式。
摘要。目的。脑机接口 (BCI) 系统直接从大脑读取和解释大脑活动。它们可以为患有神经退行性疾病或中风的患者提供一种交流或运动方式。然而,大脑活动的不平稳性限制了在校准会话期间训练的算法向实时 BCI 控制的可靠转移。非平稳性的一个来源是用户大脑对 BCI 输出 (反馈) 的反应,例如,BCI 反馈是否被用户视为错误。通过考虑这些非平稳性来源,可以提高 BCI 的可靠性。方法。在这项工作中,我们展示了一种混合运动想象 BCI 的实时实现,它同时结合了来自运动想象信号和与错误相关的大脑活动的信息,从而从两个来源中获益。主要结果。与传统的运动想象 BCI 相比,我们在 12 名参与者的实时 BCI 控制中表现出显着的提高。分类准确度、目标命中率、控制主观感知和信息传输率方面都有显著改善。此外,我们对记录的 EEG 数据的离线分析表明,与运动想象信号相比,与错误相关的大脑活动提供了更可靠的信息来源。意义重大。这项工作首次表明,与运动想象分类器相比,与错误相关的大脑活动分类器在使用校准数据进行训练并在在线控制期间进行测试时更加一致,这可能解释了为什么所提出的混合 BCI 可以为有需要的患者提供更可靠的交流或康复方式。
摘要背景:目前的肌电假肢缺乏本体感受信息,依靠视觉进行控制。随着非侵入性振动触觉或电触觉反馈的出现,感觉替代技术正在不断发展,但大多数系统都是为抓握或物体辨别而设计的,很少有系统在截肢者身上进行在线控制测试。这项研究的目的是评估一种新型振动触觉反馈对健康受试者和肱骨水平上肢截肢参与者虚拟肘部肌电控制准确性的影响。方法:16 名健康参与者和 7 名肱骨截肢者在不同的反馈条件下对虚拟手臂进行肌电控制:仅视觉 (VIS)、仅振动 (VIB)、视觉加振动 (VIS + VIB) 或根本没有反馈 (NO)。通过离散和前后运动期间的角度误差来评估到达精度。使用 NASA-TLX 问卷评估健康参与者的工作量,并在实验结束时根据偏好对反馈条件进行排序。结果:NO 中的到达误差高于 VIB,表明与无反馈相比,我们的振动触觉反馈提高了性能。VIS 和 VIS + VIB 条件表现出相似的性能水平,产生的错误比 VIB 低。因此,视觉对于保持良好的性能仍然至关重要,这不会因添加振动触觉反馈而改善或恶化。与 VIB 相关的工作量高于 VIS 和 VIS + VIB,两者之间没有差异。62.5% 的健康受试者更喜欢 VIS + VIB 条件,并将 VIS 和 VIB 分别排在第二和第三位。