摘要 - 高空离子辐射会导致碳化硅动力装置降解和/或灾难性故障。测试程序和数据解释必须考虑重型离子诱导的现状泄漏电流增加将对随后的单事件效应敏感性和可检验性产生的影响。在轨道上,由于累积离子诱导的非胃动态性单事件效应,必须在整个任务寿命中确保可靠的表现。这项工作为不同的二极管,Power MOSFET和JFET设备提供了大量的重离子测试数据。SIC和SI功率设备之间比较了对单事件效应的敏感性。对硅碳化物电源设备的重型离子辐射测试方法的初步建议进行了,并讨论了辐射硬度保证,目的是将一步更近的一步移动到可靠地将这项技术从地面上脱离地面的航天器和仪器,从而使其从其独特的功能中受益。
早期的试验台设计理念之一包括将设备安装在轨道上并测量位移以获得推力,同时将力矩臂连接到应变计上以确定扭矩。由于轨道和力矩臂的摩擦损失,确定这种方法不是最准确和最有效的设计。因此,使用多轴传感器同时进行测量。该传感器必须能够分别测量由电机和螺旋桨施加的整个扭矩和推力负载范围。在对适用的传感器技术进行广泛研究并使用已发布的电机和螺旋桨数据确定负载范围后,从 FUTEK Advanced Sensor Technology, Inc. 购买了扭矩和推力双轴传感器。该传感器安装在轴的末端并输出放大的模拟信号,然后使用数模转换器将其转换为数字信号,这将在后面讨论。它可以分别测量高达 500 磅和 500 英寸磅的推力和扭矩,覆盖所需范围,安全系数为 2。传感器如图 7 所示。
因此,美国暂停直接上升式反卫星武器是向前迈出的重要一步,我希望看到更多国家加入加拿大的行列,在 OEWG 讨论期间和讨论之后承诺遵守这一行为规范。这并不是要限制能力,也不是要谁先做出这样的承诺。这是要表达完全不可接受行为的底线:任何通过武器试验故意制造碎片的行为都是不负责任的,因为这些碎片在轨道上停留的时间太长了。这些碎片以每秒 7 公里的速度飞行,比子弹快 10 倍,而轨道上已经挤满了危险的太空交通和现有碎片。以这样的速度飞行,豌豆大小的东西可能会对卫星造成致命伤害,而你我依赖这些卫星进行导航、通信、航空、航运、灾难响应、搜索和救援、银行和金融、跟踪气候变化、森林砍伐、确定大规模暴行地点。
高能快速模块化卫星组 HERMES 是一项具有挑战性的科学空间任务,旨在为新型多信使天体物理学做出贡献,通过在轨道上巧妙分布一组传感器,及时定位伽马射线爆发 (GRB),引力波产生的踪迹,同时持续监测天球。六个新型微型 X 和伽马射线探测器安装在一颗专用的 3U 立方体卫星上,构成准赤道低地球轨道星座的核心。1 这些多重空间资产通过三角测量执行协调的天空监测和定位,即使用一个分割的大型探测器。天空监测应尽可能广泛,并且必须及时将宇宙事件定位坐标(无论何时发生)传输到地面(数量级:15 分钟),以允许强大的地球仪器调查更多检测到的相关天空区域。
另一匹马为业主Pat Dyer和Vicki Smith拥有很好的记录,是Capo del Impero。盖贝琳(Ghibellines)的7yo gelding赢得了本月初连续第二次克伦威尔杯(Cromwell Cup)。这是他目前准备的第二次跑步,这是Wingatui的安德顿(Anderton's of Wingatui)的出色训练。骑师Ruvanesh Muniandy,索赔3公斤,在2030m的旅行中,他在轨道上排名第9公斤,在一条良好的赛道上使他排名第九。当田野开始在转弯之前开始移动时,鲁瓦内什(Ruvanesh)耐心和旅行,看上去更宽,但跑到赛道的中间出现,其余的都在剩下。他能够以50m的分数爆发,得分三分之三。这是他33个开始生涯中的8个,并将他提升到96个评分点。他的终身收入现在为23.5万美元,我敢肯定还有更多的商店。
• 建立太空局:在主席罗森沃塞尔的领导下,为了应对委员会面前日益增多且新颖的卫星应用,该机构成立了有史以来第一个太空局。该局旨在支持美国在太空经济中的领导地位,促进解决卫星政策的长期技术能力,并改善与其他机构在这些问题上的协调。FCC 是世界上第一个建立太空局的电信机构。 • 创造单一网络未来:FCC 一致通过了一项名为“太空补充覆盖”的新监管方案,这使其成为世界上第一个发布框架的监管机构,该框架使用以前仅分配给地面服务的频谱将卫星直接连接到消费者手机。 • 更新轨道碎片缓解和空间可持续性规则:FCC 将低地球轨道卫星在完成任务后可以在轨道上停留的时间从 25 年缩短至 5 年。执法局还向一家未能遵守其轨道碎片缓解计划的公司发出了第一张罚单。
美国太空军 (USSF) 和 NASA 正在寻求能够增强太空能力的变革性技术。这些技术必须能够实现按需服务,例如轨道转移、机动、能力增强、寿命延长、加油、维修、碎片清除、制造和组装。这些服务可以通过在轨道上而不是在地面上按需组装和制造航天器来实现。确定合作推进使能技术的途径对于确保实现这些目标至关重要。本文介绍了一项多学科努力,旨在构建技术路线图,该路线图将在 10 年内建成一个轨道小型卫星工厂。工厂概念是围绕关键使能技术构建的,例如混合增材制造,它采用熔融长丝制造、激光焊接和线嵌入。还评估了插入工厂的相对技术和制造准备情况。还确定了在未来 3 到 4 年内推进这些技术的合作开发途径。虽然该工厂专注于小型卫星制造,但这项基础工作可以扩大规模,以制造更大的航天器系统。
2022 年 10 月 5 日,卡萨达作为美国宇航局 SpaceX Crew-5 任务的飞行员乘坐 SpaceX Crew Dragon 飞船发射升空前往国际空间站。Crew-5 成员自 2022 年 10 月 6 日停靠以来一直在空间站生活和工作。在任务期间,机组人员进行了数百次实验和技术演示,包括心血管健康、生物打印和微重力下的流体行为,为人类探索近地轨道以外区域做好准备并造福地球生命。3 月 11 日星期六,美国宇航局的 SpaceX Crew-5 飞船在佛罗里达州坦帕市海岸附近安全溅落后,完成了该机构第五次国际空间站商业机组轮换任务。四名国际机组人员在轨道上度过了 157 天。卡萨达进行了三次太空行走,共计 21 小时 24 分钟。
60 多年来,太空活动为世界人民带来了巨大的利益,从汽车上的卫星导航到卫星通信/广播,再到天气预报、环境监测等等,不胜枚举。实际上,有数百种日常使用和应用的设备都依赖于卫星技术。当提供这些服务的卫星达到使用寿命并停止工作时,它们通常会留在轨道上。2018 年,仍有近 3,000 颗报废卫星在轨道上,更不用说用于将卫星送入轨道的火箭的最后阶段,以及整流罩和其他硬件。除了完整的物体外,还有数百万个碎片,这些碎片是由这些物体的退化产生的,从保护材料碎片到爆炸和碰撞产生的弹片 (1)。总共有超过 8,000 吨的碎片目前正在地球轨道上运行,对正在运行的卫星构成威胁。我们还没有触发被称为凯斯勒综合征(以首次研究这种现象的科学家命名 ( 2 ) )的噩梦场景,即碰撞产生的碎片撞击其他物体时产生爆炸,产生新的碎片,这些碎片会撞击其他物体。这将导致呈指数增长的级联效应,并迅速
大型孔径天线不仅可以为传统的通信服务和雷达提供帮助,还可以实现新的通信,遥感,深空探测和电力传输航天器的新方法。较高的天线孔可保证更高的信号分辨率和信噪比,而其精度则驱动其空间分辨率和灵敏度。在过去,开发高孔径天线是一项技术挑战,受到高刚度和重组件而针对发射限制的部署的限制,但最近在轨道上自主制造和组装方面的进步为直接在太空中直接开发的大型和光线结构的发展打开了大门。但是,如果许多文献中的许多作品都集中在空间中的大型天线制造上,那么[1]中的许多工程挑战,例如表面准确性,航天器稳定性和部署可靠性,仍然对这些技术的实际去风险施加限制。拟议的项目具有提出大型天线的欧洲端到端轨内组装方案的发展,并通过小规模的实验基准表明其关键技术挑战。通过利用团队中可用的技能建模和控制大型柔性结构[2,3]和天线技术[4,5],该项目将重点放在: