抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测的参考孔口区域的模拟光电电子学测量了预计开放阀区域(POVA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流速除以POVA。对于闭合阀间隔,获得了准稳态的背压/流动测试的数据。性能通过得出的最大负和正闭合流速度排名,通过推断的速度梯度(剪切)证明潜在的临床血栓形成性。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估了用于软闭合和减少血栓形成电位的3-D打印原型阀设计(BV3D)。结论:在瓣膜闭合处的传单几何形状,流速和预测的剪切之间的关系,照亮了假体瓣膜血栓形成的重要来源。对这种关系表示赞赏,并基于我们的实验产生了比较数据,我们实现了瓣膜原型的优化,具有降低的血栓形成性。竞争利益:没有声明。财务披露:这项研究都是所有作者都在无偿的基础上进行的。关键词:假肢;实验室模拟;预计的开放阀区;瓣膜闭合,血栓形成;阀流速;反弹中央消息是阀门关闭流速的衍生实验室指标,提供了一种对阀门模型进行潜在血液损伤的方法。这些结果为先前的临床观察提供了新的见解和机理解释,在该观察中,主动脉和二尖瓣替代物的替代方案的血栓形成潜力和抗凝需求有所不同。这项研究提出了设计和评估新型机械阀模型的前进道路,以进行未来的开发。作为对机械和生物假体瓣膜的多次修改尚未解决与血栓形成和耐用性有关的慢性缺点,因此需要一个新的开发途径,以消除前者的血栓形成,并在后者中延长耐用性。透视假肢机械阀装置会导致血细胞损害。激活凝血级联反应是通过动态阀函数引发的。设计以关注阀门行为为重点的创新可能会降低瓣膜血栓形成潜力。我们的研究表明,阀门设计可以在经验上优化,重点是该阶段。对开放气门性能的重要性重点鼓励了长期存在的偏见,而对识别潜在血栓形成并发症至关重要的闭合相位持续存在。我们的多个数据集可用于挑战这种偏见。本研究比较了三个临床瓣膜和两个实验原型。机械阀的动态运动和衍生的区域流速受到阀几何形状的影响。关注瓣膜闭合动力学可能导致潜在的血栓形成原型阀的发展。实验室实验支持阀区域流速与瓣膜血栓形成潜力有关的假设。
在本研究的第一阶段,对仪表旋启式止回阀进行了大量的测试,以确定阀瓣在各种上游流动扰动(弯头、减速器、蝶阀和多孔孔板作为高湍流源)下的稳定性,涵盖了两种不同阀门尺寸(3 英寸和 6 英寸)的各种阀瓣停止位置(50 到 75 度)和流速(高达 20 英尺/秒)。第一阶段的研究导致了上游流动扰动因素的发展,应将这些因素考虑在内,以确定实现稳定、完全打开的阀瓣位置所需的最小速度。测试矩阵还量化了当这些最小速度要求不满足时可能出现的阀瓣波动的严重程度。第一阶段研究的结果发表在 NUREG/CR-5159 中。
经导管主动脉瓣植入(TAVI)是严重主动脉瓣狭窄(AVS)最有效的治疗方法之一。不同的流派和几代经导管心脏瓣膜(THV)是可访问的,为操作员提供了选择患者守望设备的机会。在这项单中心研究中,我们介绍了接受下一代Myval Thv治疗的严重症状AV的塞尔维亚患者的结果。Myval Thv。主要终点是第30天的设备成功。次要终点包括30天全因死亡率,心血管死亡,中风,中度/重度旁腔泄漏(PVL)和新的永久性起搏器植入(PPI)。tavi是根据欧洲心脏病学指南进行的。这项研究包括13名患者,年龄为72±13岁,平均欧洲裔(7.17%)和胸外科医生协会(2.72%)得分,他们使用经皮方法成功接受了TAVI,以92.3%的成绩接受了TAVI。Myval Thv中间大小和超大尺寸分别植入46%和15%的患者中。此急性程序成功率为100%。所有患者都取得了早期装置成功的主要综合终点。没有患者在临床上有显着的主动脉介入或中度/重度PVL。没有患者经历中风,对比度引起的急性肾脏损伤,与装置相关的血管并发症或新的PPI。30天的全因死亡率为0%。Myval Thv系统在塞尔维亚的一个中心后30天内表现出了有利的安全性/效果。这是我对塞尔维亚Myval Thv的经验的第一份报告。
本数据表仅用于检查位于加压管道系统分配器内的剪切/碰撞阀。对于有吸入管道或没有管道的系统,无需填写本数据表。有关加压管道系统上剪切/碰撞阀的检查和测试程序,请参阅 PEI/RP1200 第 10 节。
在各个国家 /地区批准了爱德华兹产品的特定用途。示例包括:•我们在日本推出了Edwards Sapien 3 Ultra Resilia阀•我们在欧洲获得了Edwards Sapien 3 Ultra Resilia阀的CE Mark批准•我们获得了Evoque Tricususpid Valve System
无线传感器节点用于远程监视90°手杆阀的阀位置。从连接的传感器和无线传感器节点的阀位置以及其他测量和状态数据以可调时间间隔记录,并将其传输到洛万网络中的远程站。该数据可用于显示或进一步处理。可以通过无线传感器节点的下行链路通道从Lorawan网络远程访问无线传感器节点,以查询或调整设备参数值。参数化也可以使用移动设备(智能手机或平板电脑)和相应的Wilsen应用程序通过传感器节点中的其他蓝牙接口进行。
•气体重组迷宫•火焰引导阀防止任何外部点火源进入电池电池•压力释放阀以释放操作过程中产生的任何多余压力•充电状态指示器可视觉指南,以提供电池电压的视觉指南•开放通风孔类型的通风管道孔•如果需要的如果需要
事故飞机的左主起落架 (LMLG) 外筒自上次大修以来已运行了大约 8 年半,空气加注阀孔中可能存在杂散镀镍。镀镍是维持外起落架筒内径公差的允许程序,但不允许在空气加注阀孔中使用镀层。文献和测试研究表明,镀镍厚度为 0.008 英寸会导致应力系数增加 35%。在 LMLG 使用寿命的某个时刻,会发生一次负载事件,导致空气填充阀孔附近的材料压缩屈服,从而产生残余拉伸应力。在正常运行期间,空气填充阀孔中的应力水平可能在设计范围内,但由于镍引起的残余应力和应力强度因子的增加,这些应力水平增加到足以在空气填充阀孔的每一侧引发和发展疲劳裂纹的水平。通过开发有限元模型 (FEM) 检查空气填充阀孔处的应力,该模型通过从装有仪表的在役 Fedex MD-10 飞机收集的数据进行验证。在役数据和 FEM 表明,在所有条件下,空气填充阀孔中的应力都远高于外筒设计中的预期。对在役结果进行疲劳分析并使用镀镍系数得出