•调查状态的更新; •调查的指标和数据分析; •计划资金和支出; •实施策略和修改; •计划注意事项和下一步; •对立法机关的建议。P.L. 2021,c。 478要求部门在2024日历年结束之前完成一半的调查,并在2025年日历年结束之前完成整个调查。 这是基于2021年提交给立法机关的700个地点的初步估算。 随着调查的进行,该部门还确定了需要调查的366个“站点”。 由于员工彻底查看了数十年的项目文件,因此发现了其他信息。 使用原始的700个站点的原始估计数量,该部达到了土壤和地下水调查所需的50%目标。 使用当前确定的地点总数(1,066),该部门已完成了约42%的土壤调查和45%的地下水调查。 截至2024年10月31日,该部门已收集了约2,919个(主要是住宅)地下水样本。 ,有80%低于缅因州的临时饮用水标准,即20万亿(ppt),总计为6个PFA(PFOA,PFO,PFO,PFNA,PFHXS,PFHXS,PFHPA和PFDA)。 剩余的20%超过了图ES-1中所示的类别。 农业,保护和林业部(DACF)表示,采样的35个农场的地下水水平超过了临时饮用水标准。P.L.2021,c。 478要求部门在2024日历年结束之前完成一半的调查,并在2025年日历年结束之前完成整个调查。这是基于2021年提交给立法机关的700个地点的初步估算。随着调查的进行,该部门还确定了需要调查的366个“站点”。由于员工彻底查看了数十年的项目文件,因此发现了其他信息。使用原始的700个站点的原始估计数量,该部达到了土壤和地下水调查所需的50%目标。使用当前确定的地点总数(1,066),该部门已完成了约42%的土壤调查和45%的地下水调查。截至2024年10月31日,该部门已收集了约2,919个(主要是住宅)地下水样本。,有80%低于缅因州的临时饮用水标准,即20万亿(ppt),总计为6个PFA(PFOA,PFO,PFO,PFNA,PFHXS,PFHXS,PFHPA和PFDA)。剩余的20%超过了图ES-1中所示的类别。农业,保护和林业部(DACF)表示,采样的35个农场的地下水水平超过了临时饮用水标准。
•地下水有限/分类区是由水资源委员会盆地计划中的规则建立的,可能会导致新的地下水权限发行有限。因此,地下水有限/机密区域的限制性不如关键地下水区域,因为它不包括在现有水权下对用水施加限制的权力。•关键的地下水区(CGA)是一个法定指定,允许水资源委员会不仅限制签发新的地下水权,而且对现有地下水权施加了一系列限制。俄勒冈州目前有7个CGA。在撰写本报告时,OWRD正在积极更新其512分部规则,以在大哈尼谷地下水中建立额外的CGA。7•地下水缓解区是OWRD为缓解机会提供技术意见的领域。目前唯一的例子是Deschutes Basin,其中缓解程序允许使用缓解信用来开发地下水来维护或改善流量。•退出拨款名称适用于俄勒冈州的特定流,根据法规,该州不允许转移或仅允许特定实体允许转移。退出的原因可能是保护某些瀑布,保护市政供应或保护鱼类生命的原因。目前,ORS第538章下的立法保护尚未应用于地下水。
河水温度是生态系统支持和水质维护必不可少的许多生物学和化学过程的关键指标。由于气候变化的影响不断增加,预计河流温度将升高,从而导致潜在的不利后果。因此,必须对影响河流温度的驾驶员进行透彻的理解。物理或基于过程的模型适合丰富我们对调节河流温度的机制的理解。在这项研究中,我们收集了有关河水温度和建模的文章,并根据它们的建模类型和能量成分对它们进行了分类。我们回顾了基于物理的模型,以确定影响河水温度的各种能量通量的相对比例。结果表明,尽管其重要性,但地下水通量的考虑不如其他通量,特别是对于小河流。我们还审查了半分布的土壤和水评估工具(SWAT)模型,该模型已应用于流温度的计算,发现对该模型进行的一些修改主要使用了平衡温度方法,而只有少数研究考虑了地下水的细胞。我们的发现突出了需要进一步改进建模技术的必要性,特别是改善地下通量的表示,尤其是地下水,以更好地管理生态系统保存和水质。
会议将接受公众意见,也可以在会议前通过电子邮件提交给 VINAGSAPUBLICCOMMENTS@CHICOCA.GOV。如果您想在本次会议上向董事会发言,请填写发言人卡并在该项目的工作人员陈述结束前将其交给董事会秘书。每位发言人对所有项目的发言时间限制为三 (3) 分钟,议程项目的总时间限制为三十分钟。如果提交了 10 张以上的议程项目发言人卡,时间限制可能会缩短至每位发言人一分半钟。
冰川地下水可以在北极的冰川和多年冻土下动员深处的甲烷,从而导致这种温室气体的大气排放。我们提出了一个暂时的水力化学数据集,该数据集是在两个熔融季节中从高北极冰川前场收集的富含甲烷的地下水,以探索甲烷排放的季节性动态。我们使用甲烷和离子浓度以及水和甲烷的同位素组成来研究地下水的来源以及地下水传输到表面的甲烷的起源。我们的结果表明了两个地下水的来源,一个浅层和一个深层,它们混合和中等的甲烷动力学。在夏季,富含甲烷的地下水被浅含氧地下水稀释,导致某些微生物甲烷在表面出现之前。地下水中微生物组成的表征表明,微生物活性是沿该流路线的重要季节性甲烷下沉。在所研究的地下水池中,我们发现由于微生物氧化,整个夏季,潜在的甲烷排放平均减少了29%(±14%)。在冬季,由于冷冻,减少地下甲烷氧化并有可能允许更大的甲烷排放,因此许多浅层系统关闭,而深层地下水保持活跃。我们的结果表明,随着含水层的能力和补给量在变暖的气候下增加,不同地下水来源的比率将在未来发生变化。
与此同时,农历科学以及寻求评估和利用可能助长农历经济的资源的工业企业将推动向地下运营转移。地下操作可能是一个可行的解决方案,用于在表面上的极端条件下,在月球上建立持续的长期存在,受到影响较小或根本没有影响,具体取决于深度。在〜30厘米或更长时间的深度时,月球雷果维持稳定的热环境[1],屏蔽设备和潜在的栖息地,从月球表面的恶劣温度变化中。此外,地下区域包含有价值的资源,例如水冰,这对于原位资源利用(ISRU)至关重要,以支持月球上的长期人类存在。调查地下还提供了对Regolith的地质力学特性的见解,从而为未来的月球任务提供了更好的施工,开挖和流动性计划。这项工作提出了一个新颖的概念,该概念是使用适合在地下移动的机器人系统,使用身体和移动性的一部分受到地下生物(例如sand蛇和earth)的启发。所提出的技术将探索地下热特性,地质力学性质的变化以及潜在有价值的储量的检测和表征,包括但不限于冰矿床。通过弥合表面和地下探索之间的差距,这种方法有可能解锁对月球科学和沉降的关键见解。以下讨论是指类似蛇的机器人,用于初始概念插图。应注意的是,在农历之夜生存的能力已被确定为要封闭民间空间探索的#1优先技术差距[2]。
探索和利用地下空隙来实现长期月球人的人类习惯:运输,挑战和补救技术利用了充气的结构和mycoarchitection。Christopher Maurer 1,James Head 2,Lynn J. Rothschild 3。1个红屋。克利夫兰,哦。chris@redhousestudio.net,布朗大学,普罗维登斯,RI。james_head@brown.edu。3 NASA AMES。 Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。 ),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。 所有这些技术都需要非常重要的建筑材料,能源和水的可用性。 On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination. 在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。3 NASA AMES。Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。Moffett Field,CA。lynn.J.Rothschild@nasa.gov。简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。所有这些技术都需要非常重要的建筑材料,能源和水的可用性。On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination.在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。1-3)用于长期人类居住。1,底部)。月球和火星上的自然地下空隙:地球和行星研究揭示了长期居住和保护避免月球和火星表面条件的极端和危险的另一种概念。地球火山学家长期以来都知道,富富火山喷发会产生熔岩流,其面孔可以冷却和屋顶,从而形成了深度的熔岩管,并继续从喷发地点流出熔岩[3]。最终,这些充满熔岩的地下熔岩管从流动的前面排出,留下一个埋藏的,通常是弯曲的,熔岩管(图1顶部),通常可以通过屋顶上的孔进入,称为“天窗”(图
在可再生能源的快速发展中,能源供应的间歇性和不稳定构成了严重的挑战,并对能源存储系统施加了更高的要求。在各种储能技术中,功率到水的耦合方法(H 2)和地下H 2存储(UHS)提供了诸如扩展存储持续时间和大规模容量之类的优点,这使它对未来的发展非常有希望。然而,在UHS期间,特别是在多孔培养基中,微生物代谢过程,例如甲烷生成,乙酰发生和硫酸盐还原可能导致H 2征服和副产物的产生。这些微生物活动可能会对UHS的效率和安全性产生积极和负面影响。因此,本文对多孔培养基中UHS中微生物相互作用的实验,数值和领域进行了全面综述,旨在捕获研究进度并阐明微生物效应。首先概述了UHS的主要类型和关键的微生物代谢过程。随后,本文介绍了用于研究气体岩石岩石相互作用和界面培养物,数值研究中使用的模型和模拟器的实验方法,以及实施了内部试验的程序。此外,它分析和讨论了微生物相互作用及其对多孔媒体中UHS的积极和负面影响,重点是H 2消耗,H 2流和存储安全性。©2024作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.根据这些见解,网站选择的建议,工程操作以及对UHS的现场监控以及潜在的未来研究方向。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
地下环境是地球最大的微生物寿命之一。,直到最近,我们还缺乏适当的数据来准确区分全球分布的海洋和陆地表面和地下微生物组。在这里,我们分析了478个古细菌和964个细菌元编码数据集和147个元基因组,来自不同分布的环境。微生物多样性在局部至全球尺度的海洋和陆地微生物中相似。然而,社区组成在海洋和土地之间大不相同,证实了系统发育鸿沟,反映了动植物多样性的模式。相反,社区组成在表面与地下环境之间重叠,支持多样性连续性而不是离散的地下生物圈。微生物寿命的差异似乎比表面和地下之间的差异更大。陆地微生物组的多样性随深度减小,而海洋地下多样性和与培养的分离物竞争对手的系统发育距离或超过表面环境的距离。我们确定了不同的微虫群落组成,但对于地球地面和表面环境而言,微生物多样性相似。