Natacha B. B. Bernier A, *,Mark Hemer B,Nobuhito Mori C,Christian M. Oleksander Huizy,Jennifer L. Irish M,Kirezci N的Ebru,Nadao Kohno,Jun-Whan Lee P,Jun-Whan Lee P,Kathleen LMartha Marcos S,Reza Marsooli S,Ariadna Oliva U,Menendez Menendez,Moghimi Saeed AB,Val Swail,Tomoya C
fi g u r e 2(a)建模最大光合作用(p max),(b)所有原点的呼吸(r)peatland Type×地下水位(WT)历史组合,以及(C和D)在实验过程中的温室环境。p max(a)和r(b)值估算,然后平均。每条线代表每个测量运动中两个物种的CO 2通量值(n = 4)。在周期性干旱(虚线)进行的中co症测量了五次:干旱前,峰值干旱,然后在树周的恢复期间每周一次。对照中的中焦点没有周期性干旱(实线)进行了三次:干旱前,峰值干旱和恢复3周后。每个源subsite(原点泥炭型×WT历史组合)均以不同的颜色表示。线类型将控制与干旱处理的中孔分开。(c)用两个DHT22传感器在中心水平上测量空气湿度,其值平均。使用两个Pino-Tech土壤观察到10个传感器测量土壤水分,每个传感器中有一个经过干旱和对照中的中验。土壤水分传感器未校准泥炭土壤,而是描述时间变化。(d)用两个DHT22传感器在中孔水平上记录空气温度,其值平均。土壤温度是使用两个中心中的DS18B20传感器测量的,并且还将这两个传感器的记录值进行平均。室内测量活动(表2)标有灰色阴影,干旱时期的启动和结束是用灰色虚线标记的。
为了正确完成监视,记录了高于平均海拔井的平均海平面的仪表(称为基准测试标准)。鉴于所得的地下水水平是相对于该基准测量的,因此该参考点对于计算平均海平面以上水的水平至关重要。当这些钻孔主要在1940年代和1970年代钻孔时,设定了这些基准。近年来,对一些先前钻孔的钻孔和所有新的地下水监测站进行了重新调查,以确认或设置这些基准测试,并在必要时进行相应的更新。目前正在使用水压传感器在固定深度下降低的水压传感器,该水压传感器降低,该深度距离水柱顶部约5米。然后,通过大气压补偿水压。气压仪也已在马耳他,戈佐和科米诺的多个地点设置。在设置和放置这些晴雨表时,确保涵盖了地下水水平监测的所有不同高度,因为这些高度会影响地下水水平的计算。在这些监视站中的每个监测站,地下水
根管消毒对于根管治疗的成功至关重要。为此目的,人们使用各种冲洗液,每种都有不同的特性。本研究旨在评估次氯酸钠 (NaOCl)、氯己定 (CHX)、乙二胺四乙酸 (EDTA) 以及 NaOCl 与 MTAD 混合物(四环素酸和清洁剂的混合物)在根管消毒中的有效性和安全性。20 名接受根管治疗的患者被随机分成四组,接受不同的冲洗液。评估了微生物减少率、组织溶解能力、生物相容性、平均工作时间和不良反应。NaOCl 的微生物减少率(3.8 log10)和组织溶解能力(平均得分 4.2)最高。CHX 表现出显著的抗菌效果(3.5 log10)和良好的生物相容性。EDTA 和 MTAD 能有效去除玷污层,但需要更长的工作时间。不良反应极少,NaOCl 的发生率最高(2 例)。 NaOCl 仍然是根管消毒的黄金标准,而 CHX 则提供了具有良好生物相容性的合适替代品。EDTA 和 MTAD 可有效去除玷污层,但可能需要更长的治疗时间。临床医生在选择灌溉溶液以获得最佳根管治疗效果时应考虑这些因素。关键词:根管消毒、灌溉溶液、次氯酸钠、氯己定、乙二胺四乙酸。https://doi.org/10.33887/rjpbcs/2024.15.3.32
该研究的目的是根据机器学习算法和气候变化方案来估计未来的地下水潜在区域。14个参数(即曲率,排水密度,坡度,粗糙度,降雨,温度,相对湿度,谱系密度,土地使用和土地覆盖,一般土壤类型,地质学,地质学,地形学位置(TPI),地形湿度(TWI)用于开发机器学习量学算术。使用三种机器学习算法(即人工神经网络(ANN),逻辑模型树(LMT)和逻辑回归(LR))用于识别地下水潜在区域。根据ROC曲线选择了最佳拟合模型。代表性浓度途径(RCP)为2.5、4.5、6.0和8.5降水的气候场景,用于对未来的气候变化进行建模。最后,基于最佳的机器学习模型和未来的RCP模型,在2025、2030、2035和2040年确定了未来的地下水潜力区。根据发现,ANN比其他两个模型显示出更好的准确性(AUC:0.875)。ANN模型预测,土地的23.10%处于非常高的地下水潜力区域,而33.50%的地下水潜在区域则为33.50%。该研究在不同的气候变化方案(RCP2.6,RCP4.5,RCP6和RCP8.5)下预测降水值的2025、2030、2035和2040使用ANN模型,并使用ANN模型显示每个场景的空间分布图。最后,为将来的地下水潜在区域生成了16个场景。政府官员可以利用该研究的结果为国家一级的水管理和规划提供基于证据的选择。
抽象的不加选择的电池浪费是危害人类健康和环境的巨大问题。这项研究旨在分析Ogun State的电池回收利用污染的健康影响,该公司拥有各种各样的电池回收行业。在该研究地点,在湿和干燥的季节中研究了40种水样品,以评估电池回收废物对地下水的影响。除TSS外,地下水的生理化学参数随季节而变化,并且在允许的极限范围内。The electrical conductivity (EC), turbidity, Phosphorus, Biochemical oxygen demand (BOD), Dissolve oxygen (DO), and Total suspended solid (TSS) within the study year ranges from 51.00 - 178.22 S/cm, 2.26 - 2.36 NTU, 0.089 - 0.66 mg/L, 13.3 - 14.2 mg/L, 5.06 - 5.67 mg/l和78.0-88.4 mg/l。Furthermore, the average concentrations (in ppm) obtained for Mn, Cu, Zn, Ni, Cd, As, Fe, Pb, Cr, and Co are 0.407 – 0.42, 0.355 – 0.369, 0.179 – 0.225, 0.061 – 0.265, 0.366 – 0.464, 0.488 – 0.631, 0.544 – 0.601, 0.481 - 0.576,0.284 - 0.334,0.3 - 0.382。重金属污染指数(HPI)值在3.880到4.528之间表示重金属污染的水平最小,但是水质指数(WQI)得分范围为124.68至131.46,表明潜在的环境危害。关键字:电池废物,重金属,物理化学参数和电池回收。简介
含水层既可以限制和不受限制。无限制的含水层通常是浅的。在不受限制的含水层中,地下水位是含水层的顶部,仅受大气压力(就像地表水一样)。限制的含水层通常要深得多,并受到从上方和下方的密集岩石的限制,从而将地下水流入或流出含水层。这可能导致含水层超出大气压力。
大约20年前,在与以前的3M处置设施相关的东部双子城的地表水和地下水中发现了每种和多氟烷基物质(PFA)。今天,明尼苏达州卫生部(MDH)估计,140,000多个明尼苏达州人的饮用水供应受到PFA的污染,覆盖150平方英里。 明尼苏达州污染控制机构(MPCA)随后确定了其他PFA来源,包括垃圾填埋场,废水处理设施和数十个行业。 法规继续降低环境中的允许水平。 现有的PFA的清洁技术仅限于在集中位置提取地下水后的地上或点源处理。 例如,伍德伯里市建立了一个临时设施,以解决PFAS影响的地下水,耗资超过1100万美元。 其他补救技术,例如饮用水处理厂,通过机械操作将PFA浓缩,或使用吸附剂或树脂将PFA与替代培养基结合。 由于密集的基础设施成本,实施非常昂贵,再加上仍然需要正确管理的高能源投入和残留废物产品。 对现场规模生物修复技术的关注很少,以破坏PFA,这将减轻对接触点的治疗技术的需求。 海湾韦斯特(Bay West)具有独特的资格来应对这一挑战。今天,明尼苏达州卫生部(MDH)估计,140,000多个明尼苏达州人的饮用水供应受到PFA的污染,覆盖150平方英里。明尼苏达州污染控制机构(MPCA)随后确定了其他PFA来源,包括垃圾填埋场,废水处理设施和数十个行业。法规继续降低环境中的允许水平。现有的PFA的清洁技术仅限于在集中位置提取地下水后的地上或点源处理。例如,伍德伯里市建立了一个临时设施,以解决PFAS影响的地下水,耗资超过1100万美元。其他补救技术,例如饮用水处理厂,通过机械操作将PFA浓缩,或使用吸附剂或树脂将PFA与替代培养基结合。由于密集的基础设施成本,实施非常昂贵,再加上仍然需要正确管理的高能源投入和残留废物产品。对现场规模生物修复技术的关注很少,以破坏PFA,这将减轻对接触点的治疗技术的需求。海湾韦斯特(Bay West)具有独特的资格来应对这一挑战。
• TA-V 地下水受到硝酸盐和三氯乙烯 (TCE) 污染,浓度高于美国环境保护署饮用水最高污染物水平 (MCL)。 • 硝酸盐和 TCE 源自 20 世纪 60 年代至 1992 年期间 TA-V 排放的工业和化粪池废水。硝酸盐也可能自然产生。 • 除 TAV-MW17 外,监测井每半年或每年采样一次,以检测硝酸盐和 TCE(关注成分),每年采样一次,以检测废物特性参数。
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。