指导出版物1。“针对目标投掷的最终效力者的识别和学习控制” - Hasith Venkata Sai Pasala,Nagamanikandan Govindan和Samarth Brahmbhatt,IEEE Robotics and Automation and Automation Fetters,第1卷。9,不。11,pp。9558-9564,2024年11月2。“ Imagine2Servo: Intelligent Visual Servoing with Diffusion-Driven Goal Generation for Robotic Tasks ” - Pranjali Pathre, Gunjan Gupta, M. Nomaan Qureshi, Mandyam Brunda, Samarth Brahmbhatt , and K. Madhava Krishna, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024 3.“ OpenBot-Fleet:与真实机器人进行集体学习的系统” - MatthiasMéuller,Samarth Brahmbhatt,Ankur Deka,Ankur Deka,Quentin Leboutet,David Hafner和Vladlen Koltun和Vladlen Koltun,国际机器人和自动化(ICRA)2024 4。“偷偷摸摸的人:偷偷摸摸的声学本地化” - 孟尤杨,帕特里克·格雷迪,萨玛斯·布拉姆布哈特,Arun Balajee Vasudevan,Charles C. Kemp,Charles C. Kemp和James Hays,Inter-National-National-National-National-National-National-National-inter-National-inter-National-national-inter-National-national-of Robotics and Automation and Automation(ICRA)20224 5。“基于触觉的对象插入政策的零射击” - 萨玛斯·布拉姆·伯特(Samarth Brahmbhatt),安卡尔·德卡(Ankur Deka),安德鲁·斯皮尔伯格(Andrew Spielberg)和马蒂亚斯·米勒(MatthiasMéuller),国际机器人和自动化会议(ICRA)2023 6。“压力之间:估算单个RGB图像的手压力” - 帕特里克·格雷迪,昌昌唐,萨玛斯·布拉姆·Bhatt,克里斯托弗·D·特里克,陈德·沃恩,詹姆斯·海斯,詹姆斯·海斯和查尔斯·肯普,欧洲计算机视觉会议(ECCV)2022(ORAL)7。“对软机器人抓手的视觉压力估计和控制” - 帕特里克·格雷迪,杰里米·A·柯林斯,萨玛斯·布拉姆·布拉特,克里斯托弗·D·特·特维格,昌昌唐,詹姆斯·海斯和查尔斯·C·坎普,IEEE/RSJ IEEE/RSJ国际智能机器人与系统(IROS)(IROS)2022 8。“联系人:优化联系以提高抓地力” - 帕特里克·格雷迪,郑昌,明·沃,克里斯托弗·D。“联系人:带有物体接触和手动姿势的grasps的数据集” - 萨马斯·布拉姆·汉特(Samarth Brahmbhatt),昌昌唐(Chengcheng Tang),克里斯托弗·D·特克格(Christopher D. Twigg),查尔斯·C·肯普(Charles C.“走向无标记的抓握捕获” -Samarth Brahmbhatt,Charles C. Kemp和James Hays,AR/VR计算机视觉的第三次研讨会,CVPR 2019 11.“ ContactGrasp:来自接触的功能性多手指掌握综合” - Samarth Brahmbhatt,Ankur Handa,James Hays和Dieter Fox,IEEE/RSJ国际智能机器人和系统国际会议(IROS)2019
现在,我们可以想象一个未来,世界上有残疾人生活的十亿人中有许多人可以在不损害的情况下度过自己的日常生活,这要归功于可穿戴的机器人[1]。这些设备,包括外骨骼和假肢,有可能革新我们协助个人受损的方式。对于上限,可穿戴设备可以在操纵任务中提供抓地力并掌握稳定性,对于下limb,它们可以改善步态模式并减少能量消耗。这些系统的发展激增,最初的工作主要集中在机械设计,人体的界面以及感知用户的四肢上。这产生了有效的系统,以帮助水平地形上的基本抓地任务和运动[2]。扩展到更复杂的任务和更高级别的援助需要推断用户的意图。例如,辅助手套需要知道用户要掌握特定对象以执行特定的任务,然后将掌握类型和手指跨度调整为该对象和任务。对于腿部外骨骼或假肢,该系统需要检测到用户计划上台或穿越湿的人行道,因此可以调整联合扭矩以最大程度地提高援助和稳定性。目前,最流行的下LIMB用户意图的方法是基于用户的运动学信息的惯性传感器。例如,可以使用脚上的惯性测量单元估算脚跟罢工。推断用户意图的另一种方法是利用神经肌肉界面,例如肌电图(EMG)。基于先前步态周期的控制策略可以通过假设用户打算采用类似的运动模式来预测当前的步态周期。这种方法可以测量肌肉电信号来推断运动激活。例如,可以使用从身体部位到肢体截肢的EMG信号来推断缺失的肢体的故意作用以控制活跃的上LIMB假体。基于这些生物学信号的接口和用户的行为提供了对用户内部状态的估计,但是可以解码的信息量仅限于简单的推论,例如通过关节角度传感检测步行速度的变化或用EMG脉冲触发假肢闭合[3]。这将可穿戴设备限制在少量任务中,并且用户通常将控制被认为是复杂而不自然的[4]。这是较高的上限上限假体遗弃率相对较大的原因之一。要扩大任务范围和援助质量,可穿戴机器人必须使用有关发生运动动作的上下文的信息。例如,通过广泛的机器学习,腿部肌肉上的EMG传感器可以检测与水平运动和上升楼梯之间过渡相关的肌肉活动的变化。专门基于EMG,过渡过程中的分类误差比稳态期间的分类误差高四倍[5]。另一方面,上下文的知识(楼梯的位置和步行方向)将允许前方的几个步骤和更高的准确性。计算机视觉可以在获取有关环境和任务上下文的信息中发挥核心作用。视觉提供了有关用户及其周围环境的丰富,直接和可解释的信息,如人类的视觉能力所证明。最近基于视力的人类姿势估计和行动分类技术可以提供有关人类行为的广泛信息[6]。驾驶员和行人意图预测可能是基准的一个很好的例子。感应周围环境是一个充分探索的机器人问题,可以通过对象/场景识别以及同时定位和映射等技术来实现[7]。将视觉行为与上下文信息合并以推断人们的意图仍处于最早的阶段[8],并提出了未解决的挑战。一种通用方法可以使用包括
先前的内部状态和环境的感觉输入。这个过程被称为35“分布式计算” [2,3],在大脑的背景下,被认为是认知和36个havior的基础。可以通过将“信息动力学”分为三部分37 [3]:信息存储(神经元的过去活动都会告知其未来的程度,例如LTP 38或LTD)[4],信息传输(来源神经元的过去的程度告诉目标神经元的39未来,例如突触通信)[5,6]和信息修改(即“非线性”计算40,其中神经元将不同的信息流集成到比零件总和更大的事物中)41 [7,8,9,10]。可以使用信息理论[11]进行正式化这三个动力学(请参阅秒1.1)。42先前使用信息理论研究记录的神经元网络中信息动态的先前工作43发现,在开发过程中修改信息变化的能力[10]以及在相同的发育44个窗口中,特定的信息传输模式“锁定” [12]。此外,45个信息修改的能力是在网络的神经元上分布的。集中在高46度,富俱乐部神经元中[13,14,15]。信息传输[16]已应用于各种神经和47个神经元记录(有关综合综述,请参见[5]),并允许研究人员估算有效的网络48相互作用的神经元模型。特定动态服务的目的仍然很困难。最后,主动信息存储为刺激响应49和视觉处理系统中的偏好提供了见解[4]。50尽管在这个领域进行了大量分析,但信息动态如何与行为相关的问题仍然不清楚,因为在神经文化中,许多上述工作都是在神经文化中进行的52,而不是与复杂环境相互作用的行为生物体相反。因此,提出了信息动态和行为之间的链接53(例如例如,尽管有很好的文献记录了协同信息动态,但仍不清楚它们在认知和行为相关的信息处理中扮演什么(如果有)角色,或者56仅仅是统计的Epiphenomena。为此,我们研究了信息动力学和由此产生的57个效率网络结构,同时记录了三个猕猴的额叶 - 顶端抓地力网络的最多三个皮质区域的神经种群。在录音过程中,猴子执行了59个延迟的感觉运动转换任务,涉及处理不同的视觉提示,制备和60个不同的掌握类型的记忆以及这些掌握类型的执行。(有关详细信息,请参见[17]。使用61这些数据,我们可以估计神经元级的活动信息存储,信息传输和协同62在不同的认知和行为状态中的信息修改,从而使我们能够直接评估信息动力学和复杂行为之间的相关性63个分离。68我们假设不同的行为状态和握把变化将与不同的69个信息动态模式相关。此外,通过推断传输熵64网络,我们可以应用网络科学[18,19]的技术来检查行为的变化如何改变65网络中神经元之间的有效连通性模式。最后,我们可以结合这两条66行分析,以探索神经元如何在网络夫妇中定位特定任务以揭示67个单个神经元在信息处理中的局部作用。特别地,我们假设需要高70度的主动处理的行为状态(例如与其他状态相比,识别行为提示,准备和执行动作)71将显示更复杂的活动和独特的网络结构(例如期望72固定)。我们的发现与这些假设是一致的:不同的行为状态与全球效果网络结构的明显相关性相关联73相关联,尤其是74的运动与系统的总体信息增加,并且在系统中增加了75个信息,并在协同信息处理的量中增加了75。对于两种不同的握把类型的每一种,这些网络范围的活动模式都是不同的76,并且可以根据77
1。PR抓地力,EA反射,MN Sotto,NY Valentine,Aoki V,JF Carb和Al。血管病水平:切割。伟大的皮肤病。2011; 86:961--72。GT的Haunson,Judy DW,NC Prack,Mille RA。 话语品种:综述发病机理,现在,现在,诊断工作和治疗。 cutis。 2012; 90:302--6 3。 eb。 Bartones,健康和所有伟大的生物。 兽医皮肤托尔。 2017:28,96-E2 4。 Lines KA,Drummond先生,Velho Penf。 权限云。 伟大的皮肤病。 2019; 94:594--602。 5。 LH Pitassia,PP Dinice Pain,DG Scorpio,Drummond先生,Lania BG,ML和Al。 spp barton。 来自Campinas的献血者的面包症。 巴西。 PLOS NEGL TROP DIS。 2015; 9:9:00034 6。 德拉蒙德先生,BG Lania,PPVP俱乐部,R,DMR Demolin,DG Scorpio和Al。 改善了巴顿持有人DNA检测,其中通过结合和培养方法进行血液样本。 J Clin Microbiol。 2018; 56:-1 7。 MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。 我的患者和患者综合征的验尸。 与圣trop保罗一起修订。 2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。GT的Haunson,Judy DW,NC Prack,Mille RA。话语品种:综述发病机理,现在,现在,诊断工作和治疗。cutis。2012; 90:302--63。eb。Bartones,健康和所有伟大的生物。兽医皮肤托尔。2017:28,96-E2 4。 Lines KA,Drummond先生,Velho Penf。 权限云。 伟大的皮肤病。 2019; 94:594--602。 5。 LH Pitassia,PP Dinice Pain,DG Scorpio,Drummond先生,Lania BG,ML和Al。 spp barton。 来自Campinas的献血者的面包症。 巴西。 PLOS NEGL TROP DIS。 2015; 9:9:00034 6。 德拉蒙德先生,BG Lania,PPVP俱乐部,R,DMR Demolin,DG Scorpio和Al。 改善了巴顿持有人DNA检测,其中通过结合和培养方法进行血液样本。 J Clin Microbiol。 2018; 56:-1 7。 MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。 我的患者和患者综合征的验尸。 与圣trop保罗一起修订。 2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。2017:28,96-E24。Lines KA,Drummond先生,Velho Penf。权限云。伟大的皮肤病。2019; 94:594--602。 5。 LH Pitassia,PP Dinice Pain,DG Scorpio,Drummond先生,Lania BG,ML和Al。 spp barton。 来自Campinas的献血者的面包症。 巴西。 PLOS NEGL TROP DIS。 2015; 9:9:00034 6。 德拉蒙德先生,BG Lania,PPVP俱乐部,R,DMR Demolin,DG Scorpio和Al。 改善了巴顿持有人DNA检测,其中通过结合和培养方法进行血液样本。 J Clin Microbiol。 2018; 56:-1 7。 MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。 我的患者和患者综合征的验尸。 与圣trop保罗一起修订。 2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。2019; 94:594--602。5。LH Pitassia,PP Dinice Pain,DG Scorpio,Drummond先生,Lania BG,ML和Al。spp barton。来自Campinas的献血者的面包症。巴西。PLOS NEGL TROP DIS。2015; 9:9:000346。德拉蒙德先生,BG Lania,PPVP俱乐部,R,DMR Demolin,DG Scorpio和Al。改善了巴顿持有人DNA检测,其中通过结合和培养方法进行血液样本。J Clin Microbiol。 2018; 56:-1 7。 MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。 我的患者和患者综合征的验尸。 与圣trop保罗一起修订。 2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。J Clin Microbiol。2018; 56:-1 7。 MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。 我的患者和患者综合征的验尸。 与圣trop保罗一起修订。 2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。2018; 56:-17。MR,Visentiness L,Almeida AR,Angeramia RN,FH Aoki,Velho Penf。我的患者和患者综合征的验尸。与圣trop保罗一起修订。2019:61:3 8。 PILGER DA,SPILKI FR,VV CANTARELLI。 9。2019:61:38。PILGER DA,SPILKI FR,VV CANTARELLI。9。多重SYBR®绿色时间PCR(QPCR)测定法,用于检测和分化猫中的Bartonella Henselae和Bartonella clar-Ridgeiae。Rev Inst Med Trop Sao Paulo。2014; 56:93 --- 5。Birkenheuer AJ,Levy MG,Breitschwerdt EB。在犬类血液样本中的babesia gibsoni(亚洲基因型)和B. canis dna的检测和差异化的eminested PCR的开发和评估。J Clin Microbiol。 2003; 41:4172 --- 7。 10。 Diniz PPVP,Maggi RG,Schwartz DS,Cadenas MB,Bradley JM,Hegarty B等。 犬Bartonellisos:血清学和分子 -J Clin Microbiol。2003; 41:4172 --- 7。 10。 Diniz PPVP,Maggi RG,Schwartz DS,Cadenas MB,Bradley JM,Hegarty B等。 犬Bartonellisos:血清学和分子 -2003; 41:4172 --- 7。10。Diniz PPVP,Maggi RG,Schwartz DS,Cadenas MB,Bradley JM,Hegarty B等。犬Bartonellisos:血清学和分子 -
举起大水族馆可能是一项具有挑战性的任务,尤其是在您不熟悉的情况下。但是,使用正确的设备,技术和预防措施,您可以安全有效地进行。首先,您需要评估水族馆的重量和大小。这包括使用比例或根据尺寸和材料类型来计算其重量。然后考虑储罐的形状 - 长而矩形可能更容易与多人抬起,而高大的圆形坦克需要专门的设备。接下来,评估水族馆的位置以及可能阻碍提升的任何障碍。考虑到这些因素,您可以计划安全的举动,而不会冒着伤害或损害。在准备升降机时,必须考虑水族馆的大小和重量。这将有助于确保安全提升并最大程度地减少潜在的不幸。事先准备该区域至关重要,因为它涉及清除附近附近的任何障碍或碎屑。应该建立一条清晰的路径,地板应保持水平,足够坚固,以支撑水族馆的重量以及起重设备的任何额外重量。根据水箱的尺寸和重量,可能有必要加固地板或使用专门的起重设备来防止损坏或事故。要确保安全而成功的升降机,请花时间正确准备该区域。这包括确定运输水族馆时将要采取的路径,并确保该区域清除可能造成绊倒危险的障碍。1。2。3。4。也必须确保有足够的空间容纳水族馆,并且没有可能损坏坦克或使其倾斜的低悬挂障碍物。清除任何障碍区域,并取出附近的家具或装饰,可以最大程度地减少受伤和财产损失的风险,从而使更顺畅,更有效的提升过程。准备升降机时,请评估地板的状况以确保其不平坦或不均匀,因为这可能是另一种潜在的危险。举起重物需要仔细的计划和准备,以避免受伤或损害。拥有可靠的合作伙伴可以帮助您完成整个过程,以确保平稳安全的升降机。准备该区域时,彻底保护它并收集您的团队以帮助完成任务。要成功举起一个大型水族馆,考虑其重量,并有足够的人提供帮助。始终优先考虑适当的提升技术,例如用腿而不是向后提起,保持水族馆靠近您的身体,并保持稳定的抓地力。这将均匀地分配体重并防止事故。此外,膝盖弯曲并保持背部直截了当可以大大降低受伤的风险。在握住物体时突然扭曲或突然移动对于避免严重伤害也是必不可少的。使用适当的举重技术不仅可以确保安全升降机,还可以保护您的脊柱对齐,并避免应压下背部。采取这些预防措施,您可以自信地完成任务,而不必担心事故或伤害。避免自来水,因为它含有有毒的氯。提起大型水族馆需要仔细考虑以防止伤害并确保在运输过程中坦克的安全。要考虑的关键因素包括水族馆的重量,路径中的障碍以及安全地抬起和安全移动所需的人数。不建议仅靠一个大型水族馆,因为这会导致严重的伤害或损坏坦克。至少有两个人可以协助提起和移动水族馆。此外,使用诸如提起绑带,吸杯或专门为水族馆设计的多莉(Dolly)提供额外的支撑和稳定性。为了防止在举起时受伤,使用适当的技术至关重要,包括用双腿而不是背部举起,使背部伸直,穿着良好的牵引力穿着合适的鞋子以及与举重伴侣进行交流。在运输过程中固定水族馆涉及使用皮带或蹦极绳以防止其转移或滑动,并在油箱周围放置毯子或填充以保护其免受颠簸或撞击。在其新位置建立一个大型水族馆需要仔细的计划。首先,确保表面可以支撑水族馆的重量,然后添加水和装饰,并让水箱在加入鱼之前正确循环。也必须考虑将鱼类从一个水族馆转移到另一种水族馆的物流,因为这可能是一项艰巨的任务,需要耐心和计划。在搬迁方面,甚至更大的鱼缸也会构成独特的挑战。为了确保平稳的过程,请测量新位置并在移动前清除任何障碍。您需要制定计划,以应对可能出现的情况,例如翻新工作,目的变化,供暖或照明问题或审美原因。一些意外的情况包括控制对油箱的使用,移动的设备以及处理大型储罐尺寸。断开加热器,泵和过滤器等设备,将其放入水罐水中以保护有益的细菌。取出水族馆的水,但要留出足够的舒适性,然后取出水下装饰。最后,卸下储罐装饰,以最大程度地减少重量和搬迁期间的潜在损害。注意:我以40%的概率随机选择了“添加拼写错误(SE)”重写方法,然后将其应用于文本。错误是偶尔且罕见的,可以在保持原始含义的同时确保可读性。所有的鱼首先要小心和美味处理,尤其是在敏感的情况下。每种人的互动都会引起一定程度的压力;通过使用渔网将它们收集并将其转移到带有水箱水的单独容器中,从而最大程度地减少了创伤。保持水族馆泵的运行,将其设置在固定鱼的临时容器中。这将维持氧合,表面搅拌并保留有益细菌培养物。不要关闭泵15分钟或更长时间,因为这会损害这些微生物。拆除装饰,设备和鱼后,您现在可以去除剩余的坦克水。清洁藻类沉积物的储罐壁,处理污垢和废物,并保存清洁的水以重复使用。再次设置主罐时,用相同的水重新填充它。如果使用自来水,请至少24小时呼吸或煮沸以加快消除氯的速度。将自来水与一些水箱水混合,然后将其倒入主罐中,以引入必需的矿物质和细菌。接下来,卸下并清洁基板以进行体重管理和清洁目的。使用储罐水清洁颗粒中的鱼类废物,藻类和食物残留物。然后,请注意将水箱移入其新位置,并用毯子覆盖以防止事故。从家人或朋友那里获得帮助,并用毯子或床单抓住滑水罐。通过这些步骤,您将在搬迁过程中最大程度地减少鱼的压力。固定水箱:轻轻调整储罐以适合您的视力,从各个角度确保稳定性。避免增加体重时可能发生的倾斜或摇摆。补充水族馆水:倒回您去除的最初50%的水,以便于使用鱼类。您的坦克现在应该半满,可以准备鱼的到来。使用较小的杯子转移水以更好地控制并最大程度地减少溢出风险。添加装饰:首先移动装饰以最大程度地减少鱼类压力。在介绍鱼之前将它们整齐地放在指定的位置。使用鱼网或袋子重新安置鱼,注意不要进一步打扰它们。介绍鱼:将鱼轻轻释放到他们的新环境中。如果您有学校,请使用袋子进行无缝搬迁;对于1-2个大鱼,鱼网就足够了。5。6。准备解决可能出现的任何问题。移动鱼后,仔细倒入剩余的水中,以免破坏水生生物,并破坏植物或装饰。重新连接设备:将所有物品放回原处,仅在检查电源周围的任何湿区后,才能确保安全连接并将设备插入主电源。监视储罐:观察储罐的动态至少几个小时,以确保稳定性并检测潜在的氨积累或应力迹象。通过遵循这些步骤,您将最大程度地降低风险并成功地重新安置水族馆,同时维持健康的鱼类环境。