NOTES _____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _____________________________ _____________________________
摘要 - 自主驾驶有可能为更有效的未来移动性奠定基础,要求研究领域通过安全,可靠和透明的驾驶来建立信任。大语言模型(LLM)具有推理能力和自然语言的理解,具有作为可以与人类互动和为人类驾驶员设计的环境互动的自我运动计划的普遍决策者的潜力。尽管这条研究途径很有希望,但当前的自动驾驶方法通过结合3D空间接地以及LLMS的发展和语言能力来挑战。我们介绍了BEV-驱动程序,这是一种基于LLM的模型,用于Carla中的端到端闭环驾驶,它利用潜在的BEV功能作为感知输入。bevdriver包括一个BEV编码器,以有效地处理多视图图像和3D LiDAR点云。在一个共同的潜在空间中,BEV特征通过Q-前者传播,以与自然语言指示保持一致,并传递给LLM,该LLM预测和计划在考虑导航说明和关键场景的同时,可以精确的未来轨迹。在Langauto基准测试中,与SOTA方法相比,我们的模型在驾驶得分上的性能高达18.9%。
20 B技术领域的技术B.Tech(纸质代码 - 英语-101,物理学-322,化学-306,生物学/生物科学/生物学学/生物化学/生物化学/生物技术-304) div>)
摘 要 : [ 目的 ] 为解决无人艇的船载导航雷达对养殖区 、 浮筒 、 小型漂浮物等海洋漂浮障碍物感知效果不 佳的问题 , 提出一种基于导航雷达回波视频数据构建与更新的占据栅格地图的环境感知方法。 [ 方法 ] 首 先 , 采用多级集合的形式描述雷达点迹与回波点间的包含关系 , 为栅格地图构建奠定基础 , 期间 , 基于群相邻 关系对近邻点迹进行凝聚 , 抑制目标分裂导致的航迹偏差 ; 然后 , 利用所提的基于自然对数函数的占据栅格 地图概率更新算法 , 通过合理利用历史数据区分海杂波与微小海洋漂浮障碍物 ; 最后 , 建立基于点迹属性的 栅格地图概率扩散模型 , 以较好地保证典型动态目标占据栅格更新的实时性。 [ 结果 ] 实船试验结果表明 , 所提方法可准确获取养殖区 、 浮筒等成片海洋漂浮障碍物的轮廓信息 , 抑制目标分裂现象 ; 与经典方法相比 , 所提方法对干舷 0.5 m 的小型漂浮物首次发现距离提升了 78.34 m , 定位精度提升了 1.42 m 。 [ 结论 ] 所提方 法能够实现对多种海洋漂浮障碍物 、 海面运动目标的准确感知 , 确保无人艇航行安全。
抽象背景。胶质母细胞瘤(GBM)患者的预后令人沮丧,并且需要新的治疗选择。本研究旨在确定GBM中的新治疗靶标。方法。从基因表达综合和癌症基因组地图集中收集了患者衍生的GBM(n = 1279)和正常脑组织(n = 46)样品的mRNA表达数据。功能基因组mRNA分析用于捕获基因组改变对基因表达水平的下游影响。接下来,进行了GBM和正常脑组织之间的类综合。基于(1)已知的与抗塑性药物的相互作用,(2)人类当前的药物发育状态以及(3)与已知参与GBM有关的生物学途径的关联,将GBM中显着上调的基因显着上调。抗塑性剂对优先靶标的抗肿瘤剂在体外和体内验证。结果。与正常脑组织相比,我们发现了712个GBM中的712个基因,其中27个与抗肿瘤剂具有已知相互作用。在包括EGFR和VEGFA在内的27个基因中有17个已在疗效有限的GBM中进行了临床评估。对于其余10个基因,RRM2,MAPK9(JNK2,SAPK1A)和XIAP在GBM开发中起作用。我们证明了MAPK9抑制剂RGB-286638在多个GBM细胞培养模型中的生存力丧失。尽管在体内未观察到总体生存益处,但有迹象表明RGB-286638可能会延迟肿瘤的生长。结论。MAPK9抑制剂RGB-286638显示出有希望的体外结果。此外,体内靶向促进研究和与这种化合物的组合疗法需要进一步探索。
在其一生中,Alvin经历了许多升级,以保持最先进的研究平台。最新的升级包括将其配备具有更好的人体工程学和提高可见性的新的,更大的人员领域,以及改进的推进器和更高级的指挥和控制系统。还安装了新的高清成像系统和更快的数据采集功能,并且增强了惯性导航功能,即使是在较大的深度,也可以非常准确地跟踪从地面到海底,以及一个新的科学界面,从而可以快速地集成常规和新型传感器,以供烟雾访问。
1欧洲分子生物学实验室,惠康基因组校园,欧洲生物信息学研究所(EMBL-EBI),欣克斯顿,欣克斯顿,CB10 1SD,英国,2克里姆比尔研究所,数据科学疾病数据科学发现中心,大学卫生网络,大学健康网络,5KD-407,5KD-407,Leonard Avenitute,Torontoe,Toronto,30。 UCLA, Los Angeles, CA 90095, USA, 4 Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, 00133, Italy, 5 Department of Biology, Ecology and Earth Sciences, Università della Calabria, Rende, 87036, Italy, 6 Providence John Wayne Cancer Institute, Department of Translational Molecular, Santa Monica, CA 90404, USA, 7 Univ Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622 Villeurbanne, 69622, France, 8 Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA美国90095和90095,多伦多多伦多大学医学生物物理学和计算机科学系
资金:Burroughs Wellcome基金;丽塔·艾伦基金会;偏头痛研究基金会;爱德华兹(Edwards)疼痛研究中的博士生;巴里家庭哈佛干细胞研究所奖; Ninds U19NS130617; Ninds R01NS119476; Ninds U19NS130608; Ninds U19NS130607; NIDA DP1DA054343; NEI U01EY034709; Teva Pharmaceuticals;