本文重点介绍如何使公司的战略适应数字化转型的条件。数字化转型是采用新思维方式和公司文化来实施最新数字化技术进步的过程。本文使用卡普兰和诺顿的战略地图模型研究了这些过程对业务的影响。目标是为客户创造更高的价值,发明基于信息的产品和服务,优化运营流程,有效利用资源,提高数字素养和员工之间的关系,并开发建立竞争优势的可持续商业模式。从两个维度提出了数字商业战略的类型:采用融合现代数字技术的产品(服务)和制定(实施)一致的战略以实现数字化转型。
文本属性图(标签)是连接的文本文档的图。图形模型可以有效地学习标签,但是它们的培训在很大程度上依赖于人类通知的标签,在许多应用中,这些标签稀缺甚至无法使用。大型语言模型(LLMS)最近在少数拍和零标签学习方面表现出了显着的功能,但它们遭受了可扩展性,成本和隐私问题的困扰。因此,在这项工作中,我们通过将LLM的功率提炼成Tag学习的本地图模型来协同LLM和图形模型,并具有互补的优势。要解决LLMS(文本的生成模型)和图形模型(图形的歧视模型)之间的固有差距,我们首先提议让LLMs用丰富的理由教授解释器,然后让学生模型模仿解释器的推理,而没有LLMS的理由。我们将LLM的文本原理转换为多级图理由,以训练解释器模型,并根据标签的功能将学生模型与解释器模型保持一致。广泛的实验验证了我们提出的框架的功效。
文本属性图(标签)是连接的文本文档的图。图形模型可以有效地学习标签,但是它们的培训在很大程度上依赖于人类通知的标签,在许多应用中,这些标签稀缺甚至无法使用。大型语言模型(LLMS)最近在少数拍和零标签学习方面表现出了显着的功能,但它们遭受了可扩展性,成本和隐私问题的困扰。因此,在这项工作中,我们通过将LLM的功率提炼成Tag学习的本地图模型来协同LLM和图形模型,并具有互补的优势。要解决LLMS(文本的生成模型)和图形模型(图形的歧视模型)之间的固有差距,我们首先提议让LLMs用丰富的理由教授解释器,然后让学生模型模仿解释器的推理,而没有LLMS的理由。我们将LLM的文本原理转换为多级图理由,以训练解释器模型,并根据标签的功能将学生模型与解释器模型保持一致。广泛的实验验证了我们提出的框架的功效。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验使用传统的伪距冗余实时误差分析获得了位置误差估计,并对其进行了地面实况分析。利用这些地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算出的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。这种动态范围误差模型有效地减少了观测到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验对使用伪距冗余的传统实时误差分析获得的位置误差估计进行了地面实况分析。利用此地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。该动态范围误差模型有效地减少了观察到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。