在过去十年中,对便携式电子设备的需求迅速增加,这促使电池生产的增长增长。自从1990年代开发作为商业能源储能解决方案以来,锂离子电池(LIB)由于其较长的周期寿命,高能量密度,低自我放电速率和高工作电压而引起了科学和工业的极大关注。生产LIB需要大量的聚合物粘合剂 - 通常是聚偏二氟乙烯(PVDF),以进行处理和性能。但是,由于该材料是石化衍生的,因此它远非“绿色”或可持续性。另一方面,聚合物及其构建块在整个自然界中被广泛发现,并且可以以低成本从生物量中获得。因此,用生物质衍生的粘合剂代替PVDF是减少LIB环境足迹的一种有前途的方法。此外,聚合物粘合剂在下一代电池性能中起着至关重要的作用。例如,硅(Si)是一种有前途的大容量阳极材料,因为它具有高理论能力(4200 mahg -1),工作势较低,并且在地壳中具有很高的丰度。但是,由于传统的粘合剂仅与硅的天然表面相互作用,并且无法维持电极的长期完整性,因此其在电荷/放电期间的巨大变化往往会导致循环寿命缩短。自然衍生的聚合物由于其高结构优势而在该角色上取得了更好的成功。在这篇综述中,我们总结了源自各种生物质源的硅阳极粘合剂的最新发展,重点是聚合物特性及其对电池性能的影响。我们根据自己对这些作品的评估提出了各种观点,并对该领域的未来前景进行了简要评论。
在过去十年中,对便携式电子设备的需求迅速增加,这促使电池生产的增长增长。自从1990年代作为商业能源存储解决方案的开发以来,锂离子电池(LIB)由于其较长的周期寿命,高能量密度,低自我排放速度和高工作电压而引起了科学和工业的极大关注。生产LIB需要大量的聚合物粘合剂 - 通常是聚偏二氟乙烯(PVDF),以进行处理和性能。但是,由于该材料是石化衍生的,因此它远非“绿色”或可持续性。另一方面,聚合物及其构建块在整个自然界中被广泛发现,并且可以以低成本从生物量中获得。因此,用生物质衍生的粘合剂代替PVDF是减少LIB环境足迹的一种有前途的方法。此外,聚合物粘合剂在下一代电池性能中起着至关重要的作用。例如,硅(Si)是一种有前途的大容量阳极材料,因为它具有高理论能力(4200 mahg -1),工作势较低,并且在地壳中具有很高的丰度。但是,由于传统的粘合剂仅与硅的天然表面相互作用,并且无法维持电极的长期完整性,因此其在电荷/放电期间的巨大变化往往会导致循环寿命缩短。自然衍生的聚合物由于其高结构优势而在该角色上取得了更好的成功。在这篇综述中,我们总结了源自各种生物质源的硅阳极粘合剂的最新发展,重点是聚合物特性及其对电池性能的影响。我们根据自己对这些作品的评估提出了各种观点,并对该领域的未来前景进行了简要评论。
Title of the Proposed Research The Polar Land‐Ocean Nexus: The Impact of Extreme Climate and Weather Events in the Poles Lead faculty at KU/UAE Dr. Aisha Al Suwaidi, Dr. Mohammed Ali Collaborating faculty at UiT/Norway (including affiliated research centre) Kim Senger, UNIS (https://www.unis.no/) Estimated 3‐year budget need (USD) Introduction (拟议的研究的背景,包括与北极/极地区域相关的背景)在全球范围内,我们目睹了极端的气候扰动,特别是海洋和大气温度的变化,暴风雨和野火事件的强化,以及越来越多的所谓的Pluvial洪水与正在进行的人为气候变化相关的越来越多的洪水,这会影响所有纬度。可以预计,随着气候的继续变暖,风暴,pluvial和Dright/Fire事件的数量和强度将增加(IPCC,2021年)。在卫星和接地数据中,北极和南极中全球海水和大气温度增加的影响以及全球海水和大气温度增加的影响的证据。但是,由于去除过多的材料,全球海洋循环以及生物地球化学周期,随着其他材料的增加,这些变化如何影响地壳稳定性,通过增强风化,这是有限的。极性区域在推动海洋混合和循环中起着至关重要的作用,进而影响碳吸收到海洋,海洋氧合和酸化,全球气候以及我们地球上的生命。我们目前正在尝试通过UNIS最终确定此采样的日期。我们计划扩大这项研究,以组成一个跨学科项目。由于人为驱动的气候变化而导致的极性区域的变化将对我们的星球产生重大影响,正如较低纬度的乐器前档案中所证明的那样。相关活动(与拟议的研究有关的现有工作,包括与挪威的合作有关)采样计划是通过Svalbard Unis的Kim Senger教授提交的,以通过关键间隔进行longyearbyen Core进行采样;这项工作构成了当前博士生对沉积物档案中Pluvial事件的研究的一部分。除了这项工作外,我们还一直在与主要气候变化和增强的水文活性相似的古北极圆圈中的高纬度位点工作。提出的研究(研究目标,研究任务和预期结果/影响)极地地区提供了重要的领域,以研究反映温室条件的现代记录和乐器前的沉积档案,以研究这项活动的强化。我们将使用AI,计算建模,遥感,地球物理学和生物地球化学来提高我们对持续变化的记录的理解,特别是与增强的岩石和土壤风化相关,从而改变了构造的层状板块,从而改变了地壳的负载极地区域的条件以及增加的降水量。该项目有望至少支持四个博士学位项目,并导致高影响力的Q1期刊出版物和会议摘要。还将通过检查极地区域和档案记录中的现代风化来探索大气 - 海洋 - 生物界面 - 斜圈的这种耦合,这将提供有关影响,反应的时间和从这种极端气候变化中恢复地球的信息。该项目将导致可以使政府受益的数据,以了解持续变化对极地地区水文周期的影响以及这种变化的可能影响,这将允许识别缓解和适应策略。该项目将产生广泛的影响,包括在保护北极海洋环境(PAME)方面为联合国环境计划的目标1和3做出贡献;它还可以向政府间气候变化(IPCC)以及支持UN SDGS 13-15的更多信息提供进一步的信息。
David Thien David Thien Kota Kinabalu:Sabah能源委员会(ECOS),自从其成立于州监管机构,用于计划和开发可靠,可持续和负担得起的电力供应,从联邦能源委员会接管中,从联邦能源委员会接管中,收到了许多提议,以开发Sabah在Tawau of Tawau发电的地热潜力来发挥可腐烂的电力。因此,对于ECO来说,希望开发地热,以产生多达100MW的电力供应,以稳定并满足沙巴东海岸不断增长的电力需求。地热能是从地壳下方提取的热能。Tawau Hills地区是中新世至晚期火山田的大型中新世。根据ECOS战略规划部主管Terrence John Kouju的说法:“当我们第一次成为监管机构时,很多这些地热开发商 - 意大利人,冰岛人等 - 非常有兴趣跟进这种地热潜力,所以他们来到了Ecos。”他最近在Hyatt Centric的ECOS媒体参与活动中说了这一点。“实际上,现在有14位开发人员来询问我们想要开发它们的地热电台但是,作为监管机构,我们需要确保这些开发人员的建议具有竞争力。“我们打算在年底或明年年初进行RFP(提案请求),并在此之后发行RFP“他们将参加RFP,并将提交他们的建议,例如他们开发的地热项目“因此,我们将根据他们的资格以及他们计划做什么我们将建议您对Sabah能源委员会的最佳资格进行考虑。“基于该清单,以及他们将向我们收取多少费用,能源委员会将决定进一步的发展。”他说,石油是ECO鼓励探索Apas Kiri地区以外的Geot-Hermal Energy潜力发展的各方之一,以产生
摘要背景:中间的菱形词汇炎(MRG)包括在类似慢性增生性念珠菌病的亚型的结节性斑点样念珠菌病中。许多文献表明MRG是糖尿病(DM)的表现,但是直到现在DM和MRG之间的关联尚不清楚。本文报告了在未诊断的糖尿病患者中发现的MRG。案件:2019年10月,一名71岁的男子来到RSGM Universitas Jember修复了他的牙齿宽松。在口腔检查中,我们发现了一个良好的萎缩椭圆形区域,周围是厚柔软的白色斑块。在他的腿上,我们发现了瘙痒性丘疹,溃疡和地壳多种病变。对白色斑块拭子的微观检查表明,发现孢子和菌丝填充了所有视野。直接糖血液水平测试表明糖血液水平为390 mg/dl。我们诊断为患者具有与可疑DM相关的MRG。将患者给予米其唑口服凝胶,并建议每天清洁舌头三遍后使用它。用于糖尿病管理,将患者转介给詹姆布单元医学中心大学。该患者被诊断出患有糖尿病和口服抗糖尿病。两周后,萎缩区有所改善,白斑块消失了。结论:全科医生必须意识到他们是否在患者中发现MRG是否会导致潜在的未诊断全身性疾病,尤其是糖尿病的可能性。版权所有©2022国家研究与创新局。这是CC BY-SA许可证(https://creativecommons.org/licenses/by-sa/4.0/)下的开放访问文章。
为了增加阴极材料的能力,氧阴离子氧化还原反应(ARR)已在基于Li/Na的氧化氧化物中引入,以提供超出常规阳离子氧化还原反应(CRR)的电荷补偿空间。[13–15]然而,高压下晶格O 2-离子的激活通常会导致不可逆的氧气释放,从而加速了结构性重建,并导致了能力和伏特的迅速衰减。[16–18]因此,氧气的电化学实现可逆ARR的利益对于实现高能阴极材料至关重要,这仍然具有挑战性,并且可以重现创新的结构设计。与锂离子系统相比,尤其是与富含Li的配置,似乎在氧气行为上是高度不可逆的,[19]各种Na-ion Sys-tems显示出可逆的ARR,但仅在最初的几个周期中。[11,13,14,16,19-35]这些作品表明了基于ARR的Na-ion电极的有希望的功能,这激发了我们探索优化策略,这些策略可以通过维持ARR的高压操作,同时通过维持其结构稳定性,使其能够实现Na-ion pathode材料的高压操作,同时又可以实现其结构稳定性。mn和fe是地壳中的两个高度丰富的元素,因此高度可取,用于设计笔尖的阴极材料。[41][36]然而,由于1)由于1)无法控制的氧气离子的不可控制的反应途径而在高电压下以Fe/Mn的基于Fe/Mn的阴极材料的速度快速降解和严重的结构转化,2)与Jahn-Teller exterct of Mn 3 + feo 6 + 3 +相关的有害结构性降解途径。 Fe 3 +的NeOS迁移/陷阱迁移到碱金属层中,特别是在高压下循环(> 4.0 V VS Na/Na +),[35,37-40]和4)带有TM层幻灯片的复杂相变。
钙的还原电位低于锂 (Li/Li+; 3.04 V vs. SHE),但仍远低于铝 (Al/Al3+; 1.68 V vs. SHE) 和镁 (Mg/Mg2+; 2.36 V vs. SHE) 等多价离子。8,9 这意味着钙可以在与锂相似的电压下工作。钙的理论体积容量为 2073 mA h cm3,与锂相似,但低于镁 (3832 mA h cm3) 和铝 (8046 mA h cm3),尽管它们的还原电位更负导致它们的电池电压较低。 10–12 钙的有效离子半径比镁大(Ca 2+;0.99 Å,Mg 2+;0.66 Å),同时携带同等电荷,这可能导致电极中的电荷密度降低,但与其他金属离子替代品相比,它的功率密度相对较高。13 此外,钙的电荷密度和与溶剂的配位性比镁弱,这进一步增强了其动力学能力。14 在审查可行的金属离子选项时,必须考虑地球丰度,因为它为某些电池研究途径的寿命和可用性提供了视角。在可行的电荷载体中,铝在地壳中的丰度最高(8.13 wt%),其次是钙(3.63 wt%)、钠(2.83 wt%)、钾(2.59 wt%)、镁(2.09 wt%)和锂(0.0065 wt%)。15 与其他金属离子相比,钙的丰度相对较高,使其成为一个强大而可行的选择。钙离子电池 (CIB) 近期未能像钾离子和钠离子那样取得成功的一些原因是由于目前使用的电解质性能较差、Ca 2+ 在阴极材料中的插入性较差、工作电压低(<2.0 V)以及钙金属的阳极
蒙特·阿米亚塔(Monte Amiata)是一种杂种火山,在中期中期的305至231 ka之间(Laurenzi等,2015)。他们的产品由一系列熔岩和圆顶组成,从气管/纤维化岩石到橄榄石littite(Corticelli等,2015a; Ferrari等,1996; Marroni等,2015)。火山建筑是在岩浆发射期间从NNE – SSW方向排列的岩浆发射期间建造的(Brogi,2008年)。爆发活动发生在两个短期的植物中(Conticelli等,2015a; Ferrari等,1996; Marroni等,2015),与强烈的风化变化所隔离的水平相距(例如熔岩和圆顶的关键特征包含丰富的圆形杂志飞地(Ferrari等,1996及其参考文献),平坦或圆形的地壳元式Xenoliths(van Bergen,1983),Sanidine meg-Acrysts(Balducci&Leonii,1982),1982年,1982年。The area around the volcano underwent a regional uplift of about 2 km, extending from Monte Amiata to Radicofani volcanoes, covering an area of 35 x 50 km caused by an unspecified magma intrusion at a depth of 5-7 km (Acocella & Mu- lugeta, 2001; Acocella et al., 2002).尽管进行了广泛的研究,但仍在关于熔岩流和圆顶之间的地层关系,硅质末端岩浆的岩化,岩浆室内建筑,异教徒的岩石物理特征以及与岩浆的疗法相互作用的辩论。这项研究的主要观点是评估岩浆源发出的热能以及如何传播地质(Van Bergen,1983; et al。,1981; Calamals,1970; Mazzuol&Prattes,1963),1963年,1963年,1963年(Masage,2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019,1995; 2019年)(Frondin等,2009a; Nisi et al。,2014; 2014; sbrine et an al an al and and and and and and。地形物理学,地形物理学(Jram等,2017; 2017; 2017,2017,201)pemperia tempeia爪(> 250°C)和2-五个标记的市场(Frondini等,2009b; Sbrana等,2021)。
锂离子电池 (LIB) 在离子导电介质(即电解质)中通过 Li + 在阴极和阳极之间穿梭来存储/释放能量。[3] 由于 Li 的摩尔质量低(6.9)且 Li + 的离子半径小(0.76 ˚A),LIB 在各种储能系统中的 Ragone 图中表现出最佳能量密度。[4-6] 尽管如此,其他储能系统,包括超级电容器[7]、锌离子电池[8,9]、固态电池[10]、碱性金属电池[11]、锂硫电池[12] 等,在实现 LIB 方面各有优势,可实现高倍率能力、长循环寿命、通过水系/固态电解质提高安全性,并可能通过金属阳极和硫正极提高能量密度。与LIBs类似,钠离子电池(SIBs)也是由安装在集流体上的阴极和阳极组成,中间由Na+导电电解质(有时还有绝缘隔膜)隔开。[13]SIB的电化学机理也是基于Na+在阴极和阳极之间的穿梭(图1a)。尽管与LIBs有许多相似之处,但是较大的离子半径(Na+:1.02˚A)和较高的Na摩尔质量(23)将导致SIBs的电化学动力学受阻和容量受损。此外,钠的较高标准氧化还原电位(Na/Na+−2.74V vs Li/Li+−3.04V)损害了实现的能量密度。 [2,14 – 16] 因此,Na 的理论重量/体积容量(1166 mAh g −1;1131 mAh cm −3)低于 Li(3861 mAh g −1;2062 mAh cm −3)。[2] 尽管如此,由于 SIBs 的丰度更高(Na 2.36 wt.% vs Li 0.0017 wt.%)且在地壳中分布均匀,原材料成本低得多,因此 SIBs 显示出作为 LIBs 可持续且具有成本效益的替代品的巨大潜力。 [6,17] 相反的是,由于锂和钴的储量有限且分布集中在政治敏感地区,预测供应风险已引起锂原材料(如 Li2CO3)成本波动,并显著提高了 LIB 制造成本。[13,18–23] 此外,Na+ 所需能量低于 Li+
印度的第三次月球任务Chandrayaan-3将在月球高纬度位置部署一个着陆器和一个流浪者,使我们能够对这种原始位置进行有史以来的首次原位科学调查,这将有可能提高我们对主要地壳形成和后续修改过程的理解。主要着陆点(PLS)位于69.367621°,32.348126°。作为偶然性,在几乎相同的纬度上选择了替代着陆点(ALS),但向西约450 km至PLS。在这项工作中,使用了有史以来最好的高分辨率Chandrayaan-2 OHRC Dems和Ortho-images进行了对ALS的地貌,组成和温度特征的详细研究,该数据是从Chandrayaan-1和On Incon each each each each each each eachine lunar侦察机获得的数据集。为了理解热物理行为,我们使用了一个完善的热物理模型。我们发现Chandrayaan-3 ALS的特征是平滑的地形,中央部分相对较高。als由埃拉托斯尼(Eratosthenian)年龄的莫雷特斯(Moretus-A火山口)主导,位于Tycho Crater的喷出毯上。ALS是一个科学有趣的地点,可以从Tycho和Moretus中取出弹射材料。然而,由于存在Eratosthenian年龄喷射材料,该地点是巨石富集,OHRC得出的危险图证实了ALS内的75%无危险区域,因此适合着陆和漫游者操作。带有APX和LIBS板上的Tycho弹出的痕迹将有助于理解ALS内的组成变化。基于位点的光谱和元素分析,Fe的重量百分比约为4.8(wt。%),毫克〜5 wt。%和Ca〜11 wt。%。在构图上,ALS类似于具有典型的高地土壤类型组成的PL。的空间和昼夜变异性约为40 K和〜175 K。与PL相比,ALS属于类似位置,但与PL相比,ALS显示出降低的白天温度和夜间温度的降低,这表明与PL相比具有独特的热物理特征。像PLS一样,ALS似乎也是科学调查的有趣场所,Chandrayaan-3有望为对月球科学的理解提供新的见解,即使它恰好降落在替代着陆点。