在 BDE 和 BN 情报部门的领导下,参谋人员为任务规划提供的最重要贡献之一是地形分析,支持确定适合炮兵 (PAA) 的位置区域。对于最有效的单位,情报作战人员的整合过程会产生完整的作战环境 (OE) 画面,为这一选择提供信息。如果情报作战人员未能提供对地形的了解,FA BN 指挥官和 BDE 指挥官将缺乏关键信息,并且不太可能在追求任务完成时做出最佳决策。在最坏的情况下,FA BN 将无法指挥火力,缺乏在反击火力面前执行足够生存能力运动的能力,并承担为 BN 提供保障的风险。
我们有几篇文章是关于经验教训的。来自 RC-East Afghanistan,三篇文章讨论了区域信息融合中心的发展和运作,从网络定位到人类地形分析小组的整合。两篇文章谈到了伊拉克撤军中的行动。一篇文章总结了作战评估的原则,并讲述了伊拉克联合审讯和拘留中心如何利用定性和定量评估来改进行动,并在撤军期间应用它们来调整和保持有效的行动。第二篇文章重点关注 2011 年人员和设备撤出伊拉克期间对维持行动的情报支持。回到阿富汗,另一篇文章讲述了罗马尼亚和美国情报人员之间的合作问题和最终的成功故事。总结经验教训这一主题是对 CIA 职能及其与国防部关系的总结。
Aster GDEM的数字高程模型(DEM):DEM是由无植被或建筑物的高程数据产生的地形表面的3D表示。它有助于计算影响太阳辐射效率和屋顶太阳能电池板效率的斜率,方面和阴影。先进的Spacemane热排放和反射辐射仪全球数字高程模型(Aster GDEM)是美国宇航局与日本经济,贸易和行业之间的合作。Aster GDEM以30米的高分辨率提供了全球高程数据,这是对地形的详细分析所必需的。它提供了高分辨率高程数据,用于地形分析,水文建模,坡度和方面分析,太阳辐射估计,基础设施计划,自然资源管理和灾难管理。钦奈的DEM对于绘制屋顶潜力,相对于地形识别建筑物的身高,建立屋顶倾斜度,方向以及评估周围地形和结构对太阳暴露的影响至关重要。USGS Earth Explorer Web应用程序允许用户搜索,预览和下载地球上任何位置的地理空间数据,并且在此需要在钦奈中分析太阳能屋顶潜力。
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模,即地面量化的实践,是地球科学、数学、工程学和计算机科学的综合体。这门学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地面形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
•PGDCS:印度海得拉巴大学(中央大学),印度海得拉巴(1999)•博士学位(地理):Sri Krishnadevaraya大学,印度安纳塔普尔,印度阿纳塔普尔(1996)•ICAR-NET:ICAR-NET:农业科学委员会•New Delhi(1995年)•UGC-NET•1994年:和Sc. netesh•M.S.和Hra Pradab pradab pradab pradab pradab pradab pradab pradab pradab pradab pradab pradcrab, (地理):印度阿纳塔普尔(Anantapur)Sri Krishnadevaraya大学(1992年)专业经验首席科学家兼负责人(I/C) - 从2023年1月12日到直到到目前为止;首席科学家(2012年1月11日至11日),高级科学家(2006- 2012年),科学家(Sr.量表)(2001-2006),科学家(1997-2001)在印度那格浦尔市ICAR-national土壤调查与土地使用计划局。研究领域的遥感和GIS技术在自然资源管理中的应用,它包括地貌学,地形图,数字地形分析,土地资源清单,数字土壤图,土壤景观建模,农业生态学研究,土地退化图,土地使用/土地使用/土地覆盖研究,水土地覆盖研究,水域管理,水域管理,设计和土壤信息信息系统和地球系统和地球系统。国际经验
该研究的总体目标是总结战术考虑因素,由地形和天气分析产生,以支持地下操作的准备,计划和执行。该研究使用扎根理论来收集,分析和系统处理数据。该研究的主要数据源包括从兰尼亚系统中的操作中进行的目的抽样以及从中吸取的经验。现在建议将两个新的子变量从地形和天气变量中包括在地形分析模型中,用于地下操作:地下系统的位置和访问以及地下系统功能。寻找地下系统的关键是通过地形分析,物理地面搜索,操作的Indica Tors和智能产品。对地下系统特征及其映射的分析对于制定行动方案至关重要。必须在短距离内进行训练和装备进行操纵和战斗,并且可见性不佳。表面接入点以及命令和控制掩体通常被评估为关键地形。在交叉口放置的障碍物是出色的伏击站点。访问复杂的结构需要特定的技术和设备。在地下系统,现有角度,障碍物,墙壁,腔,楼梯间和其他物体内部提供覆盖和隐藏。水可以使建立地下系统,放置障碍甚至使用它们;干旱可以“创造”方法的新途径。云和雾难以检测地下系统。地形和天气分析模型,特征和策略的考虑,全部合并,支持地下系统中操作的准备,计划和执行。