图 1。项目位置图 图 2。LNG 终端站场地平面图 图 3。项目场地 USGS 地形图 图 4。模拟场地布局 图 5。CO 1 小时显著性分析 图 6。CO 8 小时显著性分析 图 7。NO 2 1 小时显著性分析 图 8。NO 2 年显著性分析 图 9。SO 2 1 小时显著性分析 图 10。SO 2 3 小时显著性分析 图 11。SO 2 24 小时显著性分析图12.SO 2 年度显著性分析图 13.PM 10 24 小时显著性分析图 14.PM 10 年度显著性分析图 15.PM 2.5 24 小时显著性分析图 16.PM 2.5 年度显著性分析图 17.NO 2 1 小时 NAAQS 分析图 18.NO 2 年度 NAAQS 分析图 19.SO 2 1 小时 NAAQS 分析图 20.PM 2.5 24 小时 NAAQS 分析图 21.PM 2.5 年度 NAAQS分析图 22。PM 10 24 小时 NAAQS 分析图 23。NO 2 年度增量分析图 24。PM 2.5 24 小时增量分析图 25。PM 2.5 年度增量分析图 26。PM 10 24 小时增量分析图 27。PM 10 年度增量分析
2000 年 1 月 27 日起,当前的旺格雷强制广播区 (NZC116) 和进近条件区 (NZC117) 将停用,并由新的强制广播区 (NZC114) 取代。此更改是在与要求更改的当地运营商协商后做出的。大家认为,一个包含旺格雷机场的大型 MBZ 将为飞行员提供比旧进近条件区及其相邻 MBZ 更高的安全性。只有一种特殊用途空域还将确保所有飞机都配备无线电设备并定期进行位置报告。此外,着陆灯或防撞灯必须打开(如果安装)。有关此空域更改的更多详细信息,请参阅 AIP 补充 AIRAC 周期 00/1(2000 年 1 月 27 日生效)。AIP 始终是此类更改的官方来源,在任何飞行前都应检查当前补充。如果您经常飞越旺格雷地区,您可能希望将 AIP 补充说明的副本附加到您当前的图表上,直到 2000 年 7 月 15 日新航空图发布。2000 年 7 月 15 日的地形图不仅会反映这些变化,还会以与陶波 VTC 相同的方式描绘从斯普林菲尔德 NDB 到机场的最终仪表进近航迹。这将有助于 VFR 交通更准确地确定 IFR 飞机可能从哪里进近。
本研究调查了运动想象脑机接口 (BCI) 控制实验中的脑电活动来源。根据不同的标准比较了 16 种脑电源分离的线性分解方法。标准是源活动之间的互信息减少和生理合理性。后者通过估计源地形图的偶极性(即通过单个电流偶极子的电位分布近似地图的准确性)以及不同运动想象任务的源活动特异性来测试。还根据发现的共享组件数量比较了分解方法。结果表明,大多数偶极分量是由独立分量分析方法 AMICA 和 PWCICA 发现的,它们也提供了最高的信息减少。这两种方法还发现了所使用的盲源分离算法中最具任务特异性的脑电模式。在模式特异性方面,它们仅次于非盲共同空间模式方法。使用活动性增加的吸引子神经网络对所有方法发现的成分进行聚类。聚类分析的结果揭示了实验中最常见的电活动模式。这些模式反映了眨眼、眼球运动、运动想象过程中的感觉运动节律抑制以及两个半球楔前叶、辅助运动区和运动前区的激活。总体而言,多方法分解以及随后的聚类和任务特异性估计是一种可行且信息丰富的程序,可用于处理电生理实验的记录。
国家测绘协调机构 (BAKOSURTANAL),印度尼西亚芝比农 – aldino.rizaldy@bakosurtanal.go.id 第一委员会,第一工作组 /1 第二十二届 ISPRS 大会,墨尔本 2012 年 8 月 25 日 – 9 月 1 日 关键词:直接地理配准、数字摄影测量、GPS/IMU、外部方向 摘要:直接地理配准是摄影测量中的一种新方法,尤其是在数码相机时代。从理论上讲,这种方法不需要地面控制点 (GCP) 和空中三角测量 (AT),即可将航空摄影处理为地面坐标。与旧方法相比,该方法有三个主要优点:在相同精度下数据处理速度更快、工作流程简单、项目成本更低。直接地理配准使用两个设备,GPS 和 IMU。GPS 记录相机坐标(X、Y、Z),IMU 记录相机方向(omega、phi、kappa)。两个参数合并为外部方向 (EO) 参数。此参数是摄影测量项目下一步工作所必需的,例如立体编辑、DSM 生成、正射校正和镶嵌。该方法的精度在印度尼西亚棉兰的地形图项目中进行了测试。使用 Vexcel 的大画幅数码相机 Ultracam X,而 GPS / IMU 是 IGI AeroControl。使用 19 个独立检查点 (ICP) 来确定精度。水平精度为 0.356 米,垂直精度为 0.483 米。具有此精度的数据可用于 1:2.500 地图比例项目。1. 简介
国家测绘局、测绘总司令部撰写 简介 作为土耳其的国家测绘局,测绘总司令部 (GCM) 负责建立和维护大地测量网络,收集和构建地形数据、地理空间信息以及制作土耳其标准地形图系列。GCM 的使命是及时、经济地为所有用户和社区提供各种充足、一致、最新的地理空间产品。地理空间产品是现代国家信息基础设施的重要组成部分之一,是各级政府运作、国家可持续发展和信息社会发展必不可少的组成部分。空间信息的特殊作用源于其应用的全球性、其内容的丰富性、获取和维护的成本、以及它服务于的多种目标。对空间信息的需求快速增长,加上信息和通信技术的蓬勃发展,促使土耳其采取各种举措以及政府和自治项目,旨在实现系统现代化和发展空间信息基础设施。每年,暴风雨和洪水都会给地球带来重大问题。这只是几个例子,说明影响我们生活的几乎所有事情都与地理的某些方面有关。我们对该地区了解得越多越好。我们掌握的信息越多,我们就能更恰当地采取行动、规划和分配资源、处理损害、管理风险、实施预防措施并确保我们做好准备。地理空间信息的收集和存储仍然是当今测绘界的难题。数据存储在不同的数据库系统中,基于不同的规范或质量不明确。查找感兴趣的数据或访问此类数据也可能很困难。因此,为用户提供搜索、查找和访问所需数据的便利至关重要。建立空间信息基础设施的主要目的是:
3. ☐ 附近地图,显示场地边界和场地内及边界的现有道路和通道。 4. ☐ 场地平面图,比例不小于一英寸等于五十英尺,显示:a. 用途的位置和大小,b. 缓冲区和开放空间区域,c. 景观区域,d. 建筑物占地面积以外的干扰区域,以及 e. 任何现有建筑物、地役权、公用设施和重要树木。 5. ☐ 地形图,基于场地调查,以不小于五英尺的间隔描绘现有轮廓,并定位现有溪流、湿地和其他自然特征。 6. ☐ 概念性景观规划,“包括需要移除、保留和替换的重要 (6”) 树木 7. ☐ 停车和交通规划(如果不影响可读性,可以与场地规划相结合) 8. ☐ 初步雨水管理规划 9. ☐ 公用设施规划 10. ☐ SEPA 环境检查表,除非提案根据第 19.04 章获得明确豁免 11. ☐ 提案的叙述性描述,包括:a. 列出场地大小、建筑大小和不透水表面覆盖率,b. 列出用于开放空间和娱乐、景观美化和停车的面积;c. 列出总密度和净密度的计算结果;d. 综合规划和分区指定;e. 拟议建筑物和其他拟议改进的立面图和透视图;f. 影响提案的任何协议、契约或其他条款;g. 所有记录所有者或标的物业代理人的签名、邮寄地址和电话号码。 12. ☐ 主任认为适用的其他报告或研究,包括但不限于岩土、关键区域和/或交通。
摘要 — 神经营销是利用神经科学来了解消费者对产品和服务的偏好。因此,它研究与偏好和购买意向相关的神经活动。神经营销被认为是一个新兴的研究领域,部分原因是每年在广告和促销上花费了大约 4000 亿美元。鉴于这个市场的规模,即使性能略有改善也会产生巨大影响。传统的营销方法考虑以问卷、产品评级或评论形式出现的后验用户反馈,但这些方法不能完全捕捉或解释消费者的实时决策过程。已经提出了各种生理测量技术来促进记录决策过程的这一关键方面,包括脑成像技术(功能性磁共振成像 (fMRI)、脑电图 (EEG)、稳态地形图 (SST))和各种生物传感器。EEG 在神经营销中的应用尤其有前景。脑电图 (EEG) 可以检测大脑活动的连续变化,没有明显的时间延迟,这是评估顾客无意识反应和感官反应所必需的。目前市场上有几种类型的脑电图设备,每种都有自己的优点和缺点。研究人员使用其中许多设备对不同年龄组和不同类别的产品进行了实验。由于可以获得深刻的见解,消费者和研究保护组织对神经营销研究领域进行了密切监控,以确保受试者得到适当的保护。本文调查了基于脑电图的神经营销策略的一系列考虑因素,包括可以收集的信息类型、如何向消费者呈现营销刺激、这些策略如何影响消费者的吸引力和记忆力、该领域应用的机器学习技术以及这一新兴领域面临的各种挑战,包括道德问题。关键词:脑电图、神经营销、神经科学、电子商务
一般地质和地质研究(域A)[注:以下给出的示例仅是描述性的,不是包含全包的项目列表] A-1。地球系统和过程A-1.1地球历史A-1.2地球系统(例如地球,水圈,大气层,生物圈)A-1.3地质周期和过程(例如,岩石类型,板块构造)A-1.4的水平周期和过程(例如,蒸发,蒸发,降水量,质量源)(E. GEORNES ACERES和CYC,E.平衡)A-1.7碳循环A-2。地质信息的来源A-2.1政府机构(例如USGS,USDA,NRCS,州地质调查)A-2.2科学文献(例如,经过同行评审的出版物,地质实地考察出版物,地质实地考察出版物,研究生论文)A-3。地质和地球物理工具,技术和解释A-3.1地下调查(例如,钻孔,岩石芯,土壤采样)A-3.2岩石和土壤日志记录以及描述A-3.3表面和井眼地球物理学(例如,地震反射/反射/反射,电阻,gpr,gpr,gpr,televiever,televiewer)。字段注释,文档和记录保存A-5。全局定位,坐标系统和基准A-5.1坐标系统和基准(例如类型和应用程序)A-5.2全局定位系统(GPS)A-5.3测量精度和精度A-6。比例尺和比例分析A-6.1量表类型,应用和分析A-6.2水平和垂直尺度和关系(例如垂直夸张)A-7。遥感,图像分析和地理信息系统A-8.1航空影像和摄影测量A-8.2遥感(例如,红外,雷达图像,卫星图像以及光检测和范围(LIDAR))表面和地下映射和地图应用A-7.1地形图,斜率和配置文件A-7.2地质图,符号和应用A-7.3罢工和倾斜,显而易见,厚度和深度A-7.4 ISOPACH和ISOPACH和ISOCOCOCOCTACH和ISOCOCOCTECTRATION MAPE MAPS A-8。
利用 LiDAR 数据生成高分辨率 DEM 用于水资源管理 ¹Liu, X.¹J.Peterson 和 ¹Z.Zhang 地理信息系统中心,莫纳什大学地理与环境科学学院,惠灵顿路,克莱顿,维多利亚州 3800,澳大利亚 电子邮件:Xiaoye.Liu@arts.monash.edu.au 关键词:水资源;LiDAR;DEM;排水网络;集水区。扩展摘要 地形模式在确定水资源性质和相关水文建模方面发挥着重要作用。数字高程模型 (DEM) 提供了一种表示地表的有效方法,可以自动直接提取水文特征 (Garbrecht and Martz, 1999),与基于地形图、实地调查或摄影解释的传统方法相比,它在处理效率、成本效益和准确性评估方面具有优势。然而,研究人员发现,DEM 的质量和分辨率会影响任何提取的水文特征的准确性 (Kenward et al., 2000)。因此,必须根据水文特征的性质和应用来指定 DEM 的质量和分辨率。澳大利亚维多利亚州最常用的 DEM 是维多利亚州土地可持续发展和环境部提供的 Vicmap Elevation。该模型主要使用现有 1:25,000 比例尺等高线图和数字立体捕捉的高程数据生成,提供水平分辨率为 20 米的全州地形表面表示。声称的垂直和水平标准偏差分别为 5 米和 10 米(Land-Victoria,2002 年)。在最坏情况下,水平误差可能高达 ±30 米。虽然高分辨率立体航拍照片提供了一种生成高分辨率 DEM 的潜在方法,但在当前流行的商业摄影测量软件所用技术的限制下,只能直接生成除 DEM 之外的 DSM(数字表面模型)。手动删除非地面数据以将 DSM 转换为 DEM 非常耗时。因此,使用立体航拍照片以现有的技术来生成DEM并不是一个准确且经济的方法。
图1 |在紧张的扭曲的双层石墨烯设备中,隧道光谱的演变具有连续变化的扭曲天使,跨越了多个魔法角度。a,样本示意图。tbg堆叠在HBN底物上,而在STM尖端和TBG之间的偏置电压V B通过石墨电极应用。底部显示了三种类型的堆叠配置(AA,AB和DW)。b,TBG上的大面积的STM地形图,由两个图像(200 nm×200 nm和100 nm×100 nm,偏置电压v B = -800 mV,隧道电流I T = 20 PA),未锁定的黄色盒子标记了研究区域,而黑点则表示扩展区域(见图。S1用于整个研究区域)。c,莫伊尔三角波长及其相应计算的扭曲角。左图是b中的黄色虚线盒中的区域。B和C中的两个红色三角形对应于同一位置。l 1,l 2,l 3定义为每个Moiré三角形的三个边的长度,这些长度绘制在右图中。每个Moiré三角形的相应计算的扭曲角和应变值显示在右Y轴上。d,七个AA站点中心的隧道光谱,在c中以红点为标志。魔法角度为红色。e,d i /d v colormap沿着C,AA,AB,DW,BA和AA站点的橙色虚线采集。e的上面板详细指示了虚线的路由。f,d i /d v colormap沿C中的箭头白色虚线采集,其中还标记了七个AA位点的位置。设定点:d -f,v s = -200 mV,i t = 200 pa。
