摘要 建筑物模式是地图综合过程中应保留的重要特征。然而,这些模式无法被自动系统明确访问。本文提出了一个框架和几种算法,用于自动从地形数据中识别建筑物模式,重点是共线和曲线对齐。针对这两种模式,开发了两种算法,能够识别中心对齐和边对齐模式。所提出的方法整合了计算几何、图论概念和视觉感知理论的各个方面。虽然共线和曲线模式的单个算法对每种类型的模式都显示出巨大的潜力,但识别出的模式既不完整,也不够好
地图是评估土壤和生态杂质的过程和危害,水文建模以及自然资源和土地管理的重要工具。基于现场调查或航空照片的映射土地形式的传统技术可能是时间和劳动密集型,强调了基于遥感产品的自动或半自动方法的重要性。此外,时间密集的手动标记也可以是主观的,而不是对地形的客观识别。在这里,我们实施了一种客观的方法,该方法将随机的森林机器学习算法应用于一组观察到的地形数据和1M水平分辨率裸露的数字高程模型(DEM),它是从空气中的光检测和范围数据(LIDAR)数据开发的,以快速映射丘陵地面的各种地面地面。地面分类包括高地高原,山脊,凸面,平面斜坡,凹陷坡,溪流通道和山谷底部,横跨俄克拉荷马州东北部俄克拉群岛的Ozark山脉的400公里2丘陵景观。我们使用了4200个地面观测值(每个地形600个)和八个从随机森林算法中的2 m,5 m和10 m分辨率LIDAR DEM得出的地形指数,以开发2 m,5 m和10 m分辨率地分辨率地面地面模型。我们通过比较观察到的地貌与建模地面的地图来测试DEM分辨率在映射地图中的有效性。结果表明,当协变量以2 m的分辨率分辨率为〜89%时,该方法绘制了约84%的观察到的地形,分辨率为10 m。使用这种方法开发的地图图具有多种潜在应用。然而,预测的地图显示,2 m分辨率的协变量在捕获准确的地形边界和小型地面的细节(例如溪流通道和山脊)方面表现更好。与使用空中图像和现场观测值相比,此处介绍的方法大大减少了绘制地图的时间,并允许掺入各种各样的协变量。它可以用于水文建模,自然资源管理,并在丘陵景观中表征土壤地球形过程和危害。
摘要 过度的河岸侵蚀是许多河流系统中细沉积物和相关营养物的重要来源,同时也对基础设施构成威胁。使用高分辨率地形数据进行地貌变化检测是监测河流沿线河岸侵蚀程度的有效方法。无人机系统 (UAS) 和运动结构 (SfM) 摄影测量技术的最新进展使得获取高分辨率地形数据成为可能,这也是本研究中使用的方法。为了评估基于 UAS 的摄影测量对河岸侵蚀监测的有效性,一架固定翼 UAS 在两年内多次被部署在美国东北部佛蒙特州中部的 20 公里河流走廊进行勘测。数字高程模型 (DEM) 和差异 DEM 可以量化发生明显侵蚀的勘测区域中选定部分的体积变化。结果表明,只要调查是在早春(融雪后但夏季植被生长之前)进行的,UAS 就能够以高分辨率收集高质量的地形数据,即使是在植被茂密的河流走廊沿线。使用 UAS 对河岸运动的长期估计与之前收集的机载激光雷达调查结果相比具有良好的可比性,并且可以可靠地量化河流沿岸的重大地貌变化。
fabdem构成了用于流量建模的最佳全球地形数据集。FATHOM将Fabdem与广泛的LiDar数据库混合在一起,为整个星球部署了最佳的可用地形数据。
电子地形障碍物数据概述 根据国际民用航空组织(ICAO)附件15中的新要求(第33号修正案),所有ICAO参与国应确保在2008年11月20日至2015年11月12日期间以电子格式提供地形和障碍物数据。这些数据应由任何机场周围的四个覆盖区域定义,根据每个区域的具体数值要求进行收集,并存储在具有ICAO定义的障碍物和地形要素类属性的地理数据库(数据集ICAO术语)中。障碍物要素可以表示为点、线或多边形,地形数据可以作为不同格式的栅格数据集添加(所有要素类必须根据ICAO Doc 9881中的要素目录进行建模)。可靠且精确的障碍物和地形数据可用于飞行中和地面应用,可为国际民航提供显着的安全效益。理想情况下,数据应以地理信息格式呈现,以便于评估和呈现给用户(像素高程工具提示)。(此修改段落的来源位于:http://www.esri.com/library/whitepapers/pdfs/esri-aeronautical-implementing-etod.pdf )注意:为了促进合规性,Esri 已将电子地形和障碍物数据库 (eTOD) 功能添加到 Esri® 航空解决方案中。
水深、地形和海岸线的整合对许多沿海应用有益。这种地理空间整合始于将所有数据集转换为通用垂直基准面后,将水深和地形数据混合到数字高程模型 (DEM)。垂直基准面转换工具 VDatum 已经开发出来,允许在 27 种不同的正高、3-D/椭圆体和潮汐基准面之间进行转换。VDatum 中潮汐基准面的地理分布是使用经过校准的水动力潮汐模型生成的。初步示范项目在坦帕湾地区开展,其中将 NOAA(美国国家海洋和大气管理局)的水深数据与 USGS(美国地质调查局)的地形数据进行混合。其中一个目标是解决 NOAA 的航海图和 USGS 的地图产品之间的不一致问题,尤其是在海岸线方面。演示了一种从覆盖潮间带的高分辨率激光雷达高程数据(将这些数据转换为 MHW 基准面,其中零轮廓为 MHW 海岸线)确定一致定义的平均高水位 (MHW) 海岸线的方法。VDatum 还将在以下方面发挥关键作用:(1) 实施无缝高分辨率国家水深测量数据库,该数据库将支持 ENC(电子航海图)的制作和沿海区管理人员基于 GIS 的活动;(2
电子地形障碍物数据概述 根据国际民用航空组织(ICAO)附件15中的新要求(第33号修正案),所有ICAO参与国应确保在2008年11月20日至2015年11月12日期间以电子格式提供地形和障碍物数据。这些数据应由任何机场周围的四个覆盖区域定义,根据每个区域的具体数值要求进行收集,并存储在具有ICAO定义的障碍物和地形要素类属性的地理数据库(数据集ICAO术语)中。障碍物要素可以表示为点、线或多边形,地形数据可以作为不同格式的栅格数据集添加(所有要素类必须根据ICAO Doc 9881中的要素目录进行建模)。可靠且精确的障碍物和地形数据可用于飞行中和地面应用,可为国际民航提供显着的安全效益。理想情况下,数据应以地理信息格式呈现,以便于评估和呈现给用户(像素高程工具提示)。(此修改段落的来源位于:http://www.esri.com/library/whitepapers/pdfs/esri-aeronautical-implementing-etod.pdf )注意:为了促进合规性,Esri 已将电子地形和障碍物数据库 (eTOD) 功能添加到 Esri® 航空解决方案中。
摘要使用微型氢发电厂(MHPP)已将自己确立为解决农村孤立地区能源贫困问题的基本工具,不仅在此领域,而且在大规模发电中也成为了最常用的可再生能源。尽管所使用的技术在过去几十年中取得了重要进步,但通常已应用于大型水力系统。这个事实将孤立的MHPPS的使用降级到背景。在这种情况下,这些项目的选项策略的制定仍然有很大的改善,实际上,这些项目仍然限于使用拇指规则。它导致了可用资源的次级最佳使用。这项工作建议使用遗传算法(GA)来协助MHPP的设计,从而找到MHPP不同元素的最合适位置,以实现对资源的最有效使用。为此,第一个开发了植物的详细模型,然后是最佳设计的优化问题,该问题是通过考虑真实的地形地形数据来提出的。这个问题都以single(以最大程度地降低成本)和多目标(以最大程度地降低成本,同时最大化生成的功率)模式,从而对使用气体在农村孤立区域设计MHPP的潜力进行了深入的分析。为了验证所提出的方法,它将应用于洪都拉斯的真实场景的一组地形数据。将所达到的结果与基线整数变量算法和其他元元素算法进行了比较,这表明在成本方面,解决方案的改善显着改善。
请指定提交的文件是否不适用或要求豁免*。1。申请表2。行政官员的命令沉淀申请3。拟议应用程序的叙述说明4。图纸,现场计划,调查和设计细节按要求5。税收地图6。所有权证明(契据)。如果申请人不拥有该财产,则要求所有者的书面许可才能提交申请7。收税员的证明,税收已支付8。任何保护盟约,契据限制或地役权的副本9.地形数据具有现有和建议的高程10。税务评估员办公室的官方财产所有人名单11。时间表适用分区要求以及如何满足每个要求的差异和/或设计豁免,包括住宅站点改进标准
本文讨论了摄影测量方法的主要方面以及用于数字地形数据采集和修订的工具。介绍了硬件和软件。中央大地测量、航空测量和制图研究所 (CNIIGAiK) 受 ROSCARTOGRAPHIJA 的委托,目前正在设计一些用于在航空和空间图像上采集和修订地形数据的现代摄影测量仪器和技术。这些研究的主要方式是:1)通过分析绘图仪 STEREOANAGRAPH 和 SD-20(SD-2000 模拟)改进用于地形数据采集和修订的分析摄影测量方法; 2)研究和设计用于计算中央和全景投影的航空和空间图像(单色和立体)的现代数字仪器(摄影测量扫描仪、经济高效的数字摄影测量站); 3)通过用于测绘和地理信息系统的分析和数字工作站改进数字地形数据采集和修订技术。