序言和致谢 指南和标准的目的和内容 致谢 1.0 介绍 1.1 历史回顾 1.2 地形测绘和地表地质测绘:定义和比较 2.0 不列颠哥伦比亚省地形和地表地质图的来源 2.1 介绍 2.2 机构 2.3 现行测绘计划 2.3 地形测绘人员和地形测绘资质 3.0 地形图的使用 3.1 现有地图用户 4.0 基本地形图 4.1 地形多边形的定义 4.2 划定地形多边形 4.3 多边形边界线 4.4 地形符号:字母符号 4.5 现场符号 4.6 地图比例尺和地形勘测强度等级(TSIL) 5.0 方法论 I:启动项目 5.1 确定项目目标 5.2 选择地图比例尺和调查强度等级 5.3 选择航空照片 5.4 回顾先前的工作,包括先前的测绘 6.0 方法论 II:航空照片解释 7.0 方法论 III:实地工作 7.1 目标 7.2 实地工作所需时间 7.3 初始程序 7.4 观测地点 7.5 实地检查方法 7.6 收集的数据和数据表格 7.7 数据模型 7.8 样本收集和实验室分析 7.9 收集基岩数据 7.10 晚间活动 8.0 方法论 IV:编制地形图 8.1 确定航空照片上的地形信息 8.2 将地形数据传输到底图或其他介质上 8.3 准备地图图例 8.4 附加信息
序言和致谢 指南和标准的目的和内容 致谢 1.0 引言 1.1 历史回顾 1.2 地形测绘和地表地质测绘:定义和比较 2.0 不列颠哥伦比亚省地形和地表地质图的来源 2.1 引言 2.2 机构 2.3 现行测绘计划 2.3 地形测绘人员和地形测绘资质 3.0 地形图的使用 3.1 现有地图用户 4.0 基本地形图 4.1 地形多边形的定义 4.2 划定地形多边形 4.3 多边形边界线 4.4 地形符号:字母符号 4.5 现场符号 4.6 地图比例尺和地形勘测强度等级(TSIL) 5.0 方法论 I:启动项目 5.1 确定项目目标 5.2 选择地图比例尺和调查强度等级 5.3 选择航空照片 5.4 回顾先前的工作,包括先前的测绘 6.0 方法论 II:航空照片解释 7.0 方法论 III:实地工作 7.1 目标 7.2 实地工作所需时间 7.3 初始程序 7.4 观测地点 7.5 实地检查方法 7.6 收集的数据和数据表格 7.7 数据模型 7.8 样本收集和实验室分析 7.9 收集基岩数据 7.10 晚间活动 8.0 方法论 IV:编制地形图 8.1 确定航空照片上的地形信息 8.2 将地形数据传输到底图或其他介质上 8.3 准备地图图例 8.4 附加信息
引言 水文等水文应用需要配准和处理多传感器和多源数据,例如机载雷达、专题制图仪 (TM)、数字高程模型 (OEM) 和数字地形数据(道路、河流网络等)。尽管校正 TM 数据的问题相对较少,但机载雷达图像的情况更为复杂,因为视图几何形状和由此产生的图像扰动在场景中变化更快。不同的研究人员针对雷达情况测试了各种二维图像变换(Trevett,1984 年)。在大型场景中,这些变换受到根本限制,因为它们无法应对由地形引起的局部扭曲。引用的结果介于 5 到 100 米之间,取决于区域大小、地形和所用的二维变换类型。此外,立体雷达图像能够生成数字高程模型 (OEM) 和数字雷达地图 (Leber!等,1986)。摄影产品由数字图像创建,并用于使用雷达测绘方法的摄影测量立体绘图仪器。基于 16 个检查点,随机水平差异值在两个方向上均为 30 米(例如,使用的 SAR 图像的约 4 个像素)。通常,可以使用 OEM 和立体模型测量中的辅助数据生成正射影像 (Mercer,1986)。本文描述的方法是全数字化的,包括 SAR 图像、处理和正射影像生成。本研究开发的模型采用摄影测量方法,采用基于彩色图像的光束法平差技术
国家测绘局、测绘总司令部撰写 简介 作为土耳其的国家测绘局,测绘总司令部 (GCM) 负责建立和维护大地测量网络,收集和构建地形数据、地理空间信息以及制作土耳其标准地形图系列。GCM 的使命是及时、经济地为所有用户和社区提供各种充足、一致、最新的地理空间产品。地理空间产品是现代国家信息基础设施的重要组成部分之一,是各级政府运作、国家可持续发展和信息社会发展必不可少的组成部分。空间信息的特殊作用源于其应用的全球性、其内容的丰富性、获取和维护的成本、以及它服务于的多种目标。对空间信息的需求快速增长,加上信息和通信技术的蓬勃发展,促使土耳其采取各种举措以及政府和自治项目,旨在实现系统现代化和发展空间信息基础设施。每年,暴风雨和洪水都会给地球带来重大问题。这只是几个例子,说明影响我们生活的几乎所有事情都与地理的某些方面有关。我们对该地区了解得越多越好。我们掌握的信息越多,我们就能更恰当地采取行动、规划和分配资源、处理损害、管理风险、实施预防措施并确保我们做好准备。地理空间信息的收集和存储仍然是当今测绘界的难题。数据存储在不同的数据库系统中,基于不同的规范或质量不明确。查找感兴趣的数据或访问此类数据也可能很困难。因此,为用户提供搜索、查找和访问所需数据的便利至关重要。建立空间信息基础设施的主要目的是:
科学家,CWPRS抽象的洪水危害映射对于确定容易洪水的区域和制定有效的缓解策略至关重要。这项研究利用了加权覆盖分析,该分析是从多标准决策支持系统(MCDA)得出的主观模型之一,以评估印度Auranga Patershed的洪水危害。选择了六个关键的洪水诱导因素,包括地形数据,例如高程,坡度,河流距离和流量长度,这些数据来自数字高程模型的遥感数据和分类土地使用/土地覆盖数据,以及降水的水电学数据。每个数据集被标准化为一个共同的量表,以促进比较和集成。重量被分配到高程,坡度,河流距离,流量长度,土地利用/土地覆盖和降水,并根据其在造成洪水风险的重要性上的意义。然后使用ArcGI等GIS工具将这些加权层组合在一起,从而产生了一个复合地图,该图形描绘了具有不同洪水危险区域的区域。最终的洪水危害地图确定约914平方米公里(60.0%)处于较高至非常高的洪水风险,尤其是在河流附近的地区,而约97平方米公里(6.4%)表现出非常低的洪水危害。被证明在洪水危害区域映射中有效的GIS加权覆盖分析方法,尤其是在合并更多参数时。这种方法在环境计划和风险评估中得到了广泛认可,尤其是在洪水等自然灾害的地区。关键字:洪水危害,地理信息系统,加权覆盖分析,数字高程模型,欧几里得距离1。引言洪水是最具破坏性的自然灾害之一,造成了对财产和通信基础设施的广泛且经常不可逆转的损害。这种破坏会导致人类和动物生命以及农产品和农田的丧失。现代技术和信息系统提高了我们监测和管理这些灾难的能力,但洪水的影响仍然很严重。尽管具有破坏性的性质,但洪水仍会产生一些有益的影响,例如将肥沃的土壤运输到农田并将鱼分配到较小的水体上。但是,总体后果通常更有害。洪水经常被污染,导致各种疾病的传播,包括霍乱,伤寒,钩端螺旋体病,肝炎A,疟疾和
土耳其国家测绘局、测绘总局的国家报告 简介 作为土耳其国家测绘局,测绘总局 (GCM) 负责建立和维护大地测量网络、收集和构建地形数据、地理空间信息以及制作土耳其标准地形图系列。GCM 的使命是及时且经济地为所有用户和社区提供各种适当、一致、最新的地理空间产品。地理空间产品是现代国家信息基础设施的重要组成部分之一,是各级行政机构运作、国家可持续发展和信息社会发展必不可少的组成部分。空间信息的特殊作用源于其应用的全球性、内容的丰富性、获取和维护的成本以及其服务的各种目标。对空间信息的需求快速增长,加上信息和通信技术的蓬勃发展,促使土耳其采取各种举措,以及政府和自治项目,旨在实现系统现代化和发展空间信息基础设施。每年,暴风雨和洪水都会给地球带来重大问题。这只是几个例子,说明几乎所有影响我们生活的事物都与地理的某些方面有关。我们对该地区了解得越多越好。我们拥有的信息越多,我们就能更恰当地采取行动、规划和分配资源、处理损害、管理风险、实施预防措施并确保我们做好准备。地理空间信息的收集和存储仍然是当今地图绘制领域的难题。数据存储在不同的数据库系统中,基于不同的规范或具有不确定的质量。查找感兴趣的数据或访问此类数据也可能很困难。因此,方便用户搜索、查找和访问所需数据至关重要。为了解决这些问题,GCM 开展了大地测量、摄影测量和制图研究和生产活动。1.TUTGA 是该国第一个基于 GPS 技术的基础大地测量网络 [1]。该网络由大约 600 个站点组成(见图1),这些站点是通过 1997 年至 1999 年之间的活动型 GPS 调查建立的。对于每个站点,建立空间信息基础设施的主要目的是:� 最大限度地提高数据质量和一致性,� 通过避免重复工作和建立数据生产者之间的有效合作,最大限度地降低数据收集和修订成本,� 通过实现互操作性,实现来自不同来源的数据组合,� 推进数据访问,例如基于 Web 的服务,� 促进电子政务的发展和使用空间数据建立的业务。大地测量网络和地震:三个不同的 GNSS 网络,即土耳其国家基础 GPS 网络 (TUTGA)、土耳其国家永久 GPS 网络 (TUSAGA) 和连续运行参考站 (TUSAGA- Active),是土耳其大地测量定位、测绘、导航和地球动力学的基础。由于 1999 年中期后的破坏性地震,一些站点被重新测量。
应用。土壤水分含量会影响生物圈的生理生物成分,并通过表面能和水分通量将地球表面与大气联系起来。SM 是大气的水源,通过陆地的蒸散,包括植物蒸腾和裸土蒸发。此外,SM 条件可以通过控制土壤的渗透能力和将降雨分配到径流来影响陆地表面的水文模式。生态水文学侧重于植被 - 水 - 气候关系之间的联系,已发现其对 SM 动态可用性具有复杂的依赖性(Garcia-Estringana 等人2013 年;Mulebeke 等人2013 年)。所有这些过程都高度体现了 SM 的非线性行为和复杂的反馈机制。因此,SM 的量化条件是建模农业、水文气候和气象属性的重要输入。一组成分以不同的时间和空间尺度控制陆地表面 SM 的动态。因此,天气和气候的变化都受到 SM 条件的影响。Reynolds (1970) 将 SM 分为静态(例如土壤质地和地形)和动态(例如降水和植被)控制要素。对 SM 的评估取决于相关变量的状况。这些元素中的许多都是相互关联的,并且在空间和/或时间上各不相同,这使得识别 SM 模式及其驱动变量之间的关系变得复杂。2021 )。景观要素,包括地形、植被和土地利用,是 SM 的空间和时间控制要素。SM 的空间变化与地形特征(例如坡度、海拔和地形湿度指数)密切相关。因此,在以前的一些研究中,地形属性被用于通过回归、地理空间和水文建模来估计 SM 模式的参数(例如,参见 Western 等人。1999 、2004 ;Adab 等人。2020 ;Li 等人。此外,各种研究都注意到了植被覆盖(例如类型和分布)对 SM 变化的影响。此外,空间属性对植被的影响(通常从遥感图像中解释)也被用于生成 SM 模式(Mohanty 等人。2000 ;Hupet & Vanclooster 2002 )。通常,SM 的长期时间序列可以在空间上检测到与天气或水文条件。在较大的研究区域中,网络和测量 SM 的种类仍然受到限制,此外,由于过度变化和参数之间缺乏相关性,从现场测量中获得可靠的近似值是一项具有挑战性的任务。在 SM 的几个应用中,各种各样的卫星产品都有可能帮助水文学家测量大面积的 SM 状况。由于遥感器无法直接测量 SM 含量,因此需要提取可以解释测量信号和 SM 含量之间关系的基于数学的方法来解释测量信号和 SM 含量之间的关系。2021 ; Zhu 等人。2021 )。自 20 世纪 70 年代以来,已经开发出一些遥感技术,通过测量从光学到微波领域的电磁波谱特定区域来分析和绘制 SM(Musick & Pelletier 1988;Engman 1991;Wang & Qu 2009)。微波遥感技术包括 Aqua 卫星上的先进微波扫描辐射计-地球观测系统 (AMSR-E)(自 2002 年起)、土壤湿度和海洋盐度卫星(SMOS,自 2009 年起)、多频扫描微波辐射计(MSMR,自 1999 年起)和土壤湿度主动被动 (SMAP)(自 2015 年 1 月起),目前正在运行,每天在全球范围内生成卫星记录。虽然这些方法提供了许多测量大规模 SM 的技术,但它们的分辨率几乎很低(通常约为 25 公里),不再适用于小集水区或学科尺度。光学/热红外遥感记录被称为表面温度/植被指数法,可提供更高的分辨率(约 1 公里)。最近,Zhang & Zhou(2016)提出了一种新方法,可以通过光学/热遥感进行 SM 估计,该方法特别依赖于 SM 与表面反射率和温度或植被指数之间的关联。该领域的检索策略,如热惯性,强调土壤热特性或三角测年技术,表明 SM、归一化差异植被指数 (NDVI) 和给定区域的陆地表面温度 (LST) 之间的联系正在不同的应用中使用。然而,由于缺乏足够的空间数据(包括地形或低密度植被覆盖图和数据),它们的应用受到限制。用于估计 SM 的遥感植被指数(例如,NDVI、归一化差异水指数 (NDWI) 和归一化多波段干旱指数 (NMDI))是合适的替代方案;然而,SM 的分布不能通过单一参数和通过计算出特定地表坡向强度之间的参数修改来预测。人们已经做出了大量努力,通过建立遥感 LST 与植被指数之间的联系来利用卫星图像估计 SM(例如,Dari 等人。遥感图像的实际优势之一是,除了地形数据外,还可以通过图像获得具有高空间分辨率(30 米至 1 公里)的植被和 LST 参数。利用从遥感图像中提取的结构化景观因素而不是现场测量来预测 SM 状况,可以快速实时地跟踪 SM 状况。