在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
沙特阿拉伯国家地理空间局、测绘和地理空间信息总局 (GEOSA) 也已将多份测绘服务合同授予印度公司。许多印度公司目前参与了沙特阿拉伯的众多项目,提供全面的地理空间服务,并展示了他们在大规模土地测绘、海洋和陆地测绘、地形测绘、3D 数字孪生测绘、基于 GIS 的解决方案和支持关键基础设施和环境项目的 BIM 服务方面的专业知识。虽然很难确定确切的数字,但总体估计表明,近年来,印度公司已在沙特阿拉伯的地理空间和太空领域达成了大约 15-30 项重要交易和合作。这一估计包括卫星发射协议、地理空间数据服务、智慧城市项目、培训计划和研发合作。两国之间的战略伙伴关系和共同利益意味着这些领域的持续增长和机遇。估计印度向沙特阿拉伯进口地理空间技术的价值需要考虑正在进行的项目的范围和规模。 Genesys International 和 IIC Technologies 等印度公司已获得重大项目合同,包括城市发展和数字孪生计划。鉴于这些合同的规模和
在采伐和道路设计中使用激光雷达地形测量的诱惑和陷阱 Finn Krogstad 和 Peter Schiess 论文发表于 2004 年 6 月 13-16 日在不列颠哥伦比亚省温哥华举行的 IUFRO 3.06 山地森林作业联合会议和第 12 届国际山地伐木会议摘要机载激光测高 (Lidar) 可以生成极其详细和准确的地形图,即使在被森林冠层遮挡的地面上也是如此。详细的激光雷达地形图可以识别可能的着陆地点、难以穿越的溪流、不稳定的土壤、难以穿越的边坡和有用的长凳。这些细节可以减少现场时间,指导道路设计选择更好的方案,并提高我们对成本估算的信心。然而,激光雷达测绘偶尔也会失败,这些失败的表现方式将决定激光雷达的可靠性和对道路设计的价值。我们讨论了首次使用激光雷达对雷尼尔山南部的塔霍玛州立森林进行测绘的经验。这种详细的地形测绘被用于森林作业设计,例如着陆点和道路位置,作为基于流域的采伐和运输计划的一部分。随后对基于激光雷达的办公室设计进行了实地验证。这种 DEM 在森林工程设计中取得成功的关键在于能够(或缺乏)区分地面点覆盖充足或边缘的区域,从而导致测绘细节优秀或错误。我们讨论了各种方法,这些方法可以识别激光雷达地面点覆盖边缘的区域,从而形成测绘承包商应遵守的第一组激光雷达数据收集要求。看到树冠下的情况木材采伐和道路规划中反复出现的一个问题是,用于采伐的树木可能会遮挡必须堆放原木和修建道路的地面。规划中常用的地形图基于航空照片,其中我们现在想要采伐的林分遮挡了我们必须规划的地面。因此,得到的地形图是顶部树冠的地图,带有假定树高的偏移量。不幸的是,树冠并不完全贴合地面,在采伐和道路规划中至关重要的细微地形变化并没有反映在最终的树冠顶部。地形通常包括土壤不稳定、岩石露头和不平坦的地形,这些可能会给采伐和道路带来困难。树冠还会遮挡可以作为方便着陆和道路位置的天然土丘和长凳。因此,这些地形图只能作为设计的一般指南,操作的关键要素需要基于现场验证。机载激光地形扫描 (Lidar) 的最新发展使得即使在森林树冠下也可以进行详细的地形测绘。激光雷达的工作原理是拍摄数百万
点云分类在各种机载光检测和测距 (LiDAR) 应用中发挥着重要作用,例如地形测绘、森林监测、电力线检测和道路检测。然而,由于机载 LiDAR 系统的传感器噪声、高冗余、不完整性和复杂性,点云分类具有挑战性。传统点云分类方法大多侧重于开发手工制作的点几何特征,并采用基于机器学习的分类模型进行点分类。近年来,深度学习模型的进步使得研究人员将重点转向基于机器学习的模型,特别是深度神经网络,来对机载 LiDAR 点云进行分类。这些基于学习的方法首先将非结构化的 3D 点集转换为常规的 2D 表示,例如特征图像集合,然后采用 2D CNN 进行点分类。此外,这些方法通常需要计算额外的局部几何特征,如平面度、球度和粗糙度,以利用原始三维空间中的局部结构信息。然而,3D到2D的转换会导致信息丢失。在本文中,我们提出了一种方向约束的全卷积神经网络(D-FCN),它可以将原始三维坐标和激光雷达强度作为输入;因此,它可以直接应用于非结构化三维点云进行sem
使用线性最小二乘回归技术,以 250 米的空间分辨率概括了经多尺度卷积、形态和纹理变换过滤的免费数字高程模型 (DEM) 全球数据中建筑区的垂直分量估计值。选择了六个测试案例:香港、伦敦、纽约、旧金山、圣保罗和多伦多。根据 60 种线性、形态和纹理过滤组合以及不同的概括技术,对五个全球 DEM 和两个 DEM 复合材料进行了评估。引入了四种广义的建筑区垂直分量估计值:平均建筑总高度 (AGBH)、平均净建筑高度 (ANBH)、建筑总高度标准差 (SGBH) 和净建筑高度标准差 (SNBH)。研究表明,ANBH 和 SNBH 给出的净 GVC 最佳估计值总是比 AGBH 和 SGBH 给出的相应总 GVC 估计值包含更大的误差,无论是平均值还是标准差。在本研究评估的源中,使用单变量线性回归技术估计建筑区 GVC 的最佳 DEM 源是使用联合运算符 (CMP_SRTM30-AW3D30_U) 的 1 弧秒航天飞机雷达地形测绘任务 (SRTM30) 和先进陆地观测卫星 (ALOS) 世界 3D-30 米 (AW3D30) 的组合。使用 16 颗卫星开发了一个多元线性模型
摘要。遥感技术的快速发展为进一步发展目前主要基于被动航空图像的全国测绘程序提供了有趣的可能性。特别是,我们假设多时相机载激光扫描 (ALS) 在地形测绘方面具有巨大的未被发现的潜力。在本研究中,首次测试了多时相多光谱 ALS 数据的自动变化检测。结果表明,直接比较不同日期的高度和强度数据可以揭示与郊区发展相关的微小变化。未来工作的主要挑战是将变化与地图制作中感兴趣的对象联系起来。为了在未来的测绘中有效利用多源遥感数据,我们还研究了卫星图像和地面数据补充多光谱 ALS 的潜力。开发并测试了一种从 Sentinel-2 卫星图像时间序列中进行连续变化监测的方法。最后,使用地面移动激光扫描获取高密度点云并自动将其分为四类。将结果与 ALS 数据进行比较,并讨论了不同数据源在未来地图更新过程中可能发挥的作用。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.13.4.044504]
摘要。遥感技术的快速发展为进一步发展目前主要基于被动航空图像的全国测绘程序提供了有趣的可能性。特别是,我们假设多时相机载激光扫描 (ALS) 在地形测绘方面具有巨大的未被发现的潜力。在本研究中,首次测试了多时相多光谱 ALS 数据的自动变化检测。结果表明,直接比较不同日期的高度和强度数据可以揭示与郊区发展相关的微小变化。未来工作的主要挑战是将变化与地图制作中感兴趣的对象联系起来。为了在未来的测绘中有效利用多源遥感数据,我们还研究了卫星图像和地面数据补充多光谱 ALS 的潜力。开发并测试了一种从 Sentinel-2 卫星图像时间序列中进行连续变化监测的方法。最后,使用地面移动激光扫描获取高密度点云并自动将其分为四类。将结果与 ALS 数据进行比较,并讨论了不同数据源在未来地图更新过程中可能发挥的作用。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.13.4.044504]
近年来,用于采矿业 3D 地形测绘的轻型无人机 (UAV) 得到了显著发展。特别是在露天矿等复杂地形中,海拔起伏剧烈,与传统方法相比,基于无人机的测绘已证明具有经济性和更高的安全性。然而,无人机测绘复杂地形的最重要因素之一是飞行高度,由于生成的 DEM 的安全性和准确性,需要认真考虑飞行高度。本文旨在评估飞行高度对露天矿生成的 DEM 准确性的影响。为此,研究区域选在越南北部一个地形复杂的采石场。调查采用 50 m、100 m、150 m、200 m 和 250 m 五个飞行高度进行。为了评估生成的 DEM 的精度,使用了 10 个地面控制点 (GCP) 和 385 个检查点,这些检查点通过 GNSS/RTK 和全站仪方法进行了测量。通过 X、Y、Z、XY 和 XYZ 分量的均方根误差 (RMSE) 来评估 DEM 的精度。结果表明,在飞行高度小于 150 m 时生成的 DEM 模型具有较高的精度。当飞行高度从 50 m 增加到 250 m 时,10 个 GCP 的垂直 (Z) 方向的 RMSE 从 1.8 cm 增加到 6.2 cm,水平 (XY) 方向的 RMSE 从 2.6 cm 增加到 6.3 cm,而 385 个检查点的垂直 (Z) 方向的 RMSE 从 0.05 m 逐渐增加到 0.15 m。
1 日本遥感技术中心,东急 REIT 虎之门大厦 3F,日本东京都港区 3-17-1 – (takaku, fumi_og, dotsu_masanori)@restec.or.jp 2 日本宇宙航空研究开发机构地球观测研究中心,日本茨城县筑波市浅间 2-1-1 – tadono.takeo@jaxa.jp 委员会 IV,工作组 IV/3 关键词:三线、立体、卫星、光学、高分辨率、DEM/DTM 摘要:2016 年,我们首次使用来自先进陆地观测卫星 (ALOS) 上的立体测绘全色遥感仪 (PRISM) 的立体影像整个档案完成了数字表面模型 (DSM) 的全球数据处理。该数据集以 30 米网格间距免费向公众发布,名为“ALOS World 3D - 30m (AW3D30)”,该数据集由其原始版本生成,该版本以 5 米或 2.5 米网格间距处理。此后,该数据集已更新,通过额外的校准提高了绝对/相对高度精度。但是,应应用最重要的更新来提高数据可用性,即填充空白区域,这相当于约全球覆盖率的 10%,主要是由于云层覆盖。本文介绍了 AW3D30 的更新,通过与其他开放获取 DSM(如航天飞机雷达地形测绘任务 (SRTM) 数字高程模型 (DEM)、先进星载热辐射和反射辐射计全球 DEM (ASTER GDEM)、ArcticDEM 等)之间的相互比较,填补了这些数据集的空白。
摘要:我们报告了一种新型空间激光雷达的开发,该雷达专为执行小型行星体任务而设计,用于地形测绘和样本采集或着陆支持。该仪器设计为具有宽动态范围,并针对不同任务阶段提供多种操作模式。激光发射器由光纤激光器组成,该激光器通过归零伪噪声 (RZPN) 代码进行强度调制。接收器通过将检测到的信号与 RZPN 内核关联来检测编码脉冲序列。与常规伪噪声 (PN) 激光雷达不同,RZPN 内核在激光发射窗口外设置为零,从而消除了接收器积分时间内的大部分背景噪声。该技术允许使用低峰值功率但高脉冲率的激光器(例如光纤激光器)进行长距离测距而不会产生混叠。激光功率和探测器的内部增益均可调整,以提供宽测量动态范围。激光调制代码模式也可以在轨道上重新配置,以优化针对不同测量环境的测量。接收器采用多像素线性模式光子计数 HgCdTe 雪崩光电二极管 (APD) 阵列,在近红外至中红外波长范围内具有近量子极限灵敏度,许多光纤激光器和二极管激光器都在此波长范围内工作。该仪器采用模块化和多功能设计,主要采用光通信行业开发的组件构建。