1简介AI的使用通常需要一个人类的循环组合,以便用户能够做出明智的决定。这样的决定是识别并为特定用户选择最佳计划。有可能引起用户偏好(Das等人2019; Mantik,Li和Porteous 2022)和/或以计划者可以推荐的语言指定这些偏好,例如PDDL3.0(Gerevini and Long 2005),然后让计划者选择一个最佳计划。但是,该解决方案是不切实际的,尤其是在没有所有偏好和约束的情况下,请先使用所有偏好和约束。为此,要么以Top-K计划的形式生成多个计划问题的工作历史(Riabov,Sohrabi和Udrea 2014; Katz等人。2018),高质量的计划(Katz,Sohrabi和Udrea 2020)或多样化的计划(Srivastava等人。2007; Nguyen等。 2012; Vadlamudi和Kambhampati 2016; Katz和Sohrabi 2020; Katz,Sohrabi和Udrea 2022)。 最近,有几个应用程序生成了第一个多个计划,然后在选择过程中使用了用户。 其中一些应用在患者监测领域(Sohrabi,Udrea和Riaibov 2014),企业风险管理(Sohrabi等人。 2018),对话系统(Chakraborti等人。 2022; Rizk等。 2020; Sreedharan等。 2020b)和Web服务com-(Brachman等人) 2022)。 但是,与此类系统交互的用户相互交互几乎没有得到关注。2007; Nguyen等。2012; Vadlamudi和Kambhampati 2016; Katz和Sohrabi 2020; Katz,Sohrabi和Udrea 2022)。最近,有几个应用程序生成了第一个多个计划,然后在选择过程中使用了用户。其中一些应用在患者监测领域(Sohrabi,Udrea和Riaibov 2014),企业风险管理(Sohrabi等人。2018),对话系统(Chakraborti等人。2022; Rizk等。2020; Sreedharan等。2020b)和Web服务com-(Brachman等人2022)。但是,与此类系统交互的用户相互交互几乎没有得到关注。例如,在(Chakraborti等人。2021),所有计划均显示为可以选择的单独序列 - 当然不会扩展到较大集
在过去的几年中,晶体拓扑已在光子晶体中使用,以实现边缘和角落的状态,从而增强了潜在的设备应用的光 - 物质相互作用。然而,当前用于对散装拓扑结晶相分类的带理论方法无法预测任何结果边界 - 定位模式的存在,定位或光谱隔离。虽然不同晶相中的材料之间的界面必须具有某种能量的拓扑状态,但这些状态不必出现在带隙内,因此可能对应用没有用。在这里,我们得出了一类局部标记,用于识别由于结晶对称性以及相应的拓扑保护量度。作为我们基于真实空间的方法本质上是局部的,它立即揭示了拓扑边界 - 定位状态的存在和鲁棒性,从而产生了设计拓扑结晶异质结构的预测框架。除了启用设备几何形状的优化外,我们预计我们的框架还将为依赖空间对称性的其他类别的拓扑类别提供局部标记提供途径。
标准适用性 (SA).................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... SA-100 001 国家营地标准适用性(2024 年 1 月 1 日修订).................................................................................................................................................................................................................................................................................................................................................................................................................................................................... SA-001-1 002 需要运营授权。.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SA-002-1 003 需要评估(2023 年 1 月 1 日修订) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SA-003-1 004 营地和营地财产认证(2023 年 1 月 1 日修订) . . . . . . . . . . . . . . . . . . . . SA-004-1 005 国家营地标准的差异、豁免和减免 . . . . . . . . . . . . . . . . . . . . . . . . . SA-005-1 006 NCAP 培训和认证人员(2023 年 1 月 1 日修订) . . . . . . . . . . . . . . . . . . . . . . . . . SA-006-1
摘要 遗传性运动和感觉神经病,又称腓骨肌萎缩症 (CMT),传统上是指一组以神经病为主要或唯一特征的遗传性疾病。其患病率因研究人群不同而异,估计在 1:2,500 至 1:10,000 之间。自 1989 年 Vance 等人在 17 号染色体上发现 PMP22 基因重复以来,已有 100 多个基因与这组疾病有关,我们在患者护理方面取得了进展,发现了相关疾病并采取了更好的支持性治疗,包括临床和外科干预。此外,随着遗传学领域的发现,包括 RNA 干扰和基因编辑技术,新的治疗前景开始出现。在目前的工作中,我们报告了巴西 CMT 研究方面最重要的里程碑,并对诸如我们人口中与 CMT 相关的不同基因的频率、疼痛的流行率、对怀孕的影响、呼吸特征以及新疗法的开发等主题进行了全面的回顾。
目的:开发和评估一种自动化全脑放射治疗 (WBRT) 治疗计划流程,该流程具有基于深度学习的自动勾勒轮廓和可定制的基于标志的射野孔径设计。方法:该流程包括以下步骤:(1) 使用深度学习技术在计算机断层扫描和数字重建的 X 光片上自动勾勒正常结构轮廓,(2) 使用射束视角定位标志结构,(3) 根据八种不同的标志规则生成射野孔径,以满足不同的临床目的和医生偏好。为进行质量控制,开发了两种并行的射野孔径生成方法。将生成的射野形状和剂量分布的性能与原始临床计划进行比较。来自四家医院的五名放射肿瘤学家评估了计划的临床可接受性。结果:通过临床使用的 182 名患者的视野孔径的豪斯多夫距离 (HD) 和平均表面距离 (MSD) 来评估生成的视野孔径的性能。第一种方法生成的视野孔径的平均 HD 和 MSD 分别为 16 ± 7 和 7 ± 3 毫米,第二种方法生成的视野孔径的平均 HD 和 MSD 分别为 17 ± 7 和 7 ± 3 毫米。第一种方法和第二种方法之间的 HD 和 MSD 差异分别为 1 ± 2 毫米和 1 ± 3 毫米。对 30 位患者进行的视场孔径设计临床审查显示,第一种方法和第二种方法的接受率均为 100%,计划审查显示第一种方法的接受率为 100%,第二种方法的接受率为 93%。第一种方法符合镜片剂量建议的平均接受率为 80%(左镜片)和 77%(右镜片),第二种方法为 70%(左镜片和右镜片),而临床计划的接受率为 50%(左镜片)和 53%(右镜片)。结论:本研究提供了一种自动化流程,其中包含两种视场孔径生成方法,可自动生成 WBRT 治疗计划。定量和定性评估均表明,我们的新流程与原始临床计划相当。
研究发现,频繁使用 GPS 导航辅助会对空间学习产生负面影响。在提供此类服务中的寻路指示的同时有效显示地标可以促进空间学习,因为地标可作为认知锚点帮助导航者构建和学习环境。然而,简单地在移动地图上添加地标可能会消耗额外的认知资源,从而对移动地图用户在导航过程中的认知负荷产生不利影响。为了解决这个潜在问题,我们通过实验设置了本研究,以调查在逐向指示期间在交叉路口一次显示在移动地图上的地标数量(即 3 个、5 个和 7 个地标)如何影响虚拟城市环境中地图查阅期间的空间学习、认知负荷和视觉空间编码。使用地标识别测试、路线方向测试和相对方向判断 (JRD) 来测量环境的空间学习。通过分析不同频带的功率调制以及事件相关脑电位 (ERP) 的峰值幅度,使用脑电图 (EEG) 评估认知负荷和视觉空间编码。行为结果表明,当移动地图上显示的地标数量从 3 个增加到 5 个时,地标和路线学习会得到改善,但描绘 7 个地标时空间学习并没有进一步受益。EEG 分析表明,与 3 个和 5 个地标条件相比,7 个地标条件下额中央导联的相对 θ 功率和顶枕导联的 P3 幅度增加,这可能表明 7 个地标条件下的认知负荷增加。移动地图上地标数量越多,枕骨导联的 θ ERS 和 alpha ERD 越大,表明视觉空间编码越好。我们得出的结论是,在遵循路线时可视化的地标数量可以支持地图辅助导航过程中的空间学习,但存在潜在界限——只有当显示的可视化地标数量不超过用户的认知能力时,地图上的可视化地标才有利于用户的空间学习。这些结果进一步揭示了地图辅助导航空间学习过程中认知负荷和视觉空间编码背后的神经元相关性。我们的发现也有助于神经自适应地标可视化的设计
b'in最近的地标结果[Ji等。,arxiv:2001.04383(2020)],显示在允许玩家共享无限维度的量子状态时,近似两人游戏的值是不可决定的。在本文中,我们研究了量子系统的尺寸在t界定时,两人游戏的计算复杂性。更具体地说,我们给出一个半尺寸的尺寸的程序,以实验12(log 2(at) + log(q)log(at)) /\ xcf \ xb5 2来计算附加\ xcf \ xb5-关于具有T \ xc3 \ x97 t -dimum量的两次播放游戏的值的附加值,近似值,该量的量游戏分别。对于固定尺寸t,这在Q中以Q和准多态的多项式缩放在A中,从而改善了先前已知的近似算法,其中最差的运行时保证最充其量是Q和A中的指数。为了证明,我们与量子可分离性问题建立了联系,并采用了改进的多部分量子finetti定理,并具有线性约束,我们通过量子熵不等式得出。
摘要 — 移动代理室内定位的最有效解决方案通常依赖于多传感器数据融合。具体而言,可以通过结合航位推算技术(例如基于里程计)和相对于给定参考系内具有已知位置和/或方向的合适地标的距离和姿态测量,实现准确性、可扩展性和可用性方面的良好权衡。此类技术的一个关键问题是地标部署,它不仅应考虑所采用传感器的有限检测范围,还应考虑错过地标的非零概率,即使它实际上位于传感器检测区域 (SDA) 内。本文重点研究最小地标放置,同时考虑可能的环境上下文信息。该解决方案依赖于贪婪放置算法,该算法可以最佳地解决问题,同时将定位不确定性保持在给定限制以下。通过在欧盟项目 ACANTO 背景下的多次模拟验证了所提出方法的正确性,该项目需要在大型、公共且可能拥挤的环境中(例如购物中心或机场)定位一个或多个智能机器人步行者。