免责声明:据我们所知,本文件中的信息是正确和准确的。它是善意给出的,但不提供任何保证。用户必须自行确定我们的产品是否适合其特定用途。在任何情况下,Rust-Oleum Europe 均不对间接或附带损害负责。产品必须在符合 Rust-Oleum Europe 建议的条件下储存、处理和使用,如最新更新的产品数据表中所述。用户有责任确保他们拥有最新更新的副本。最新更新的产品数据表副本可从 www.rust-oleum.eu 免费下载,或向我们的客户服务部索取。 Rust-Oleum Europe 保留更改其产品特性的权利,恕不另行通知。
图5:a)在基线时记录的平均保留力,以及在特定的插入拆除周期(23、270、540和1080)之后,在插入式循环后,定位器的保留率显着下降(p <0.05),而NovAloc重retentie则保持稳定。b)机械压缩循环后的平均保留力量等于1周,1、3、6和12个月的磨损。值得注意的是,定位器的附件在整个300,000周期的持续时间内显示出波动的保留力,而Novaloc系统在整个循环持续时间内显示出稳定的保留率。
摘要:纳米囊化已成为药物输送,增强稳定性,生物利用度以及使受控的,有针对性物质递送到特定细胞或组织的最新进展。但是,传统的纳米颗粒交付面临诸如短期流通时间和免疫识别之类的挑战。为了解决这些问题,已建议将细胞膜包被的纳米颗粒作为实际替代方法。生产过程涉及三个主要阶段:细胞裂解和膜破碎,膜分离和纳米颗粒涂层。细胞膜通常使用均匀化或超声处理的低渗裂解来碎片。随后的膜片段通过多个离心步骤隔离。可以通过挤出,超声处理或两种方法组合来实现涂层纳米颗粒。值得注意的是,该分析揭示了缺乏普遍适用的纳米颗粒涂层方法,因为这三个阶段的程序在其程序上有显着差异。本综述探讨了当前的开发和细胞膜包裹的纳米颗粒的方法,强调了它们作为靶向药物递送和各种治疗应用的有效替代方案的潜力。
一种低成本旋涂机,带有无线遥控系统,可以以比传统方法低得多的成本沉积厚度和质量均匀的薄膜。该系统由三个主要部分组成,一个电动主轴、一个旋涂头和一个连接到网络的控制系统。机械部分的机械设计、使用 ESP32 的旋涂机系统设计以及通过 Visual Basic 实现无线控制。支持网络的控制系统允许实时监控和调整沉积过程,从而提高效率和可重复性。对于寻求以传统系统一小部分成本获得薄膜沉积技术的组织来说,这种低成本旋涂系统是一种有前途的解决方案。通过将无线物联网控制集成到低成本旋涂机中,该技术对涂层均匀性的影响将为该领域的未来发展提供宝贵的见解。
摘要:Cilembu红薯是需求量大、出口量大的优良红薯品种,但出口过程需要较长的工序和时间。例如海运出口到新加坡需要12-13天。因此,需要适当的收获后处理以在出口过程中保持红薯的质量。因此,本研究的目的是确定最佳固化环境条件和蜂蜡涂膜乳液浓度,以保持Cilembu红薯在贮藏期间的品质。这项研究进行了7天,主要进行固化和涂层处理。固化在 3 种不同的环境条件下进行,即温度为 30 o C、相对湿度为 90%、温度为 23 o C、相对湿度为 50% 以及室温。同时,将其浸入3种不同浓度的蜂蜡乳液(即12%浓度、8%浓度、3%浓度)中进行涂覆,然后在室温下存放7天。试验结果表明,在贮藏过程中,抑制Cilembu红薯物理损伤>25%和发芽的最佳固化条件和蜂蜡涂膜乳液为温度30 o C、相对湿度90%和蜂蜡涂膜浓度8%。关键词:固化、涂层、品质、储存、Cilembu 红薯 摘要:红薯品种 (cv.) Cilembu 是品质优良的红薯,需求量大且出口,但出口需要较长的加工过程和时间。例如,通过海运出口到新加坡需要12-13天。因此,需要适当的收获后处理以在出口过程中保持红薯的质量。因此,本研究的目的是确定红薯的最佳固化条件和蜂蜡乳液的最佳浓度。储存期间的 Cilembu。这项研究进行了七天。固化在三种不同的环境条件下进行,分别为温度和RH,即30 o C,RH 90%; 23 ℃,相对湿度 50%;和室温。涂覆是通过浸入三种不同浓度的蜂蜡乳液进行的,浓度分别为 12%、8% 和 3%。然后将样品在室温下保存7天。结果表明,蜂蜡固化包衣乳液效果最佳,可降低红薯物理损伤程度>25%,并抑制红薯品种的发芽。 Cilembu 在储存期间在 30 o C 和 90% RH 下进行固化,并涂上 8% 的蜂蜡乳液。关键词:固化、涂层、品质、储存、cilembu 红薯
以非侵入性和定量的方式在体内实时追踪细胞、分子和药物是当代医学的优先需求,用于阐明细胞功能、监测病理过程和制定有效的治疗策略。[1] 在现有的诊断技术中,基于质子的磁共振成像( 1 H-MRI)在对软组织进行成像方面表现良好,没有深度限制,可以提供高分辨率、解剖和功能信息,而无需使用电离辐射和放射性核素。 [2] 为了进一步增强 MRI 对比度,通常使用钆或氧化铁基探针进行诊断,但它们的敏感性和特异性有限,并且其安全性仍存在争议,因为经常有毁灭性的晚期不良反应被报道或仍有待研究。 [3] 作为这些造影剂的替代品,基于氟化( 19 F)化合物的替代品正变得越来越有前景,由于 19 F 具有高旋磁比,且体内背景可忽略不计,因此可提供“热点”成像功能。 [4] 因此,氟化探针在给药后可以直接检测并以高选择性进行定量分析,特别是当它们含有多种磁当量的 19 F 原子时,最近报道的超氟化分子探针 PERFECTA 就是这种情况(图 1)。 [5] 尽管 PERFECTA 具有尖锐的 19 F 单线态共振峰和合适的弛豫特性,但它显然不溶于水,对于生物医学应用,需要通过脂质乳化剂将其分散在水介质中,或封装到聚合物纳米颗粒或胶束中。 [5,6]
为了测试建议的方法的性能,使用Heureka Planwise软件在100年内针对两个瑞典县(北方地区)和克罗伯格(BoreonMoral Zone)开发了不同的未来林业场景。模拟和分析了五种不同的测试方案; 1,当前林业(“ Cur”); 2,增长和收获的增加(“递增”); 3,保护区和额外的生物多样性促进措施(“ double+”); 4,终止林业(“停止”)和5,标准林业(“站立”)。场景“停止”模拟了所有森林管理实践均在2010年终止。但是,森林仍将受到当年之前进行的森林管理活动的影响。场景“立场”的目的是反映整个瑞典的总体平均林业,以最大程度地减少诸如架子年龄分布和变化的增长条件等因素的影响。
1 过程与材料科学实验室(LSPM-CNRS UPR-3407),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; anhnn@hus.edu.vn (信息来源); thanhhuyen.vltn@gmail.com(HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术院材料科学研究所,越南河内 Cau Giay 区 3 激光物理实验室(LPL-CNRS UMR-7538),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; jeanne.solar d@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所(ICMAB-CSIC),UAB校区,08193 Bellaterra,西班牙; agomez@icmab.es(AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM、法国工艺学院、CNRS、Cnam、HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAUL T@ensam.eu * 通信地址:silvana.mer cone@univ-paris13.fr
1 巴黎北索邦大学 (USPN) 材料科学实验室 (LSPM-CNRS UPR-3407), 93430 Villetaneuse, France; anhnn@hus.edu.vn (ANN); thanhhuyen.vltn@gmail.com (HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术研究院材料科学研究所,Cau Giay Distr.,河内,越南 3 激光物理实验室 (LPL-CNRS UMR-7538),巴黎北索邦大学 (USPN),93430 Villetaneuse,法国; jeanne.solard@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所 (ICMAB-CSIC),UAB 校区,08193 Bellaterra,西班牙; agomez@icmab.es (AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM,艺术与工艺学院,CNRS,Cnam,HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAULT@ensam.eu * 通讯地址:silvana.mercone@univ-paris13.fr
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,