CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
A.总体项目背景1。地热部门发展项目(GSDP)的融资于2014年5月29日获得世界银行董事会的批准,最初的截止日期为2020年6月30日。它于2014年8月5日生效,并于2015年4月开始支付。该项目由国际发展协会(IDA - Credit No.54680)并由战略气候基金的扩大可再生能源计划(SREP - 信托基金编号TF 17206)。它也是由冰岛政府(用于技术援助)的平行资助。埃塞俄比亚政府(GOE)也提供了同行资金。最初的信用额为SDR SDR 1.155亿(相当于1.785亿美元),来自SREP的2450万美元。它与日本政府(GOJ)密切实施,该政府在Aluto Geotermal站点共同完成了GOE的初步钻井操作。
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
网络地热的工作地热加热和冷却系统,也称为地面源热泵(GHP),使用地面而不是空气中的热能来适应建筑物的温度。整个系统都是由水平和垂直管道网络制成的,该网络是一种水基溶液,可在管道内传输热能,以及温暖而凉爽的单个房屋和建筑物的热泵。地面将基于水的溶液在恒定温度下通过管道循环。热泵将热能从溶液中拉到温暖的建筑物。同样,这些系统通过溶液将热能分散到冷却建筑物中。在网络地热系统中,地热加热和冷却系统连接,可以使多个建筑物受益 - 使用一栋建筑物的废热来加热附近的另一座建筑物。
研究涵盖的主题 ● 科罗拉多州地热的历史、地质环境以及该州目前用途的介绍 ● 科罗拉多州地热资源的评估,包括对现有井和温度数据的分析以及多张资源图的创建 ● 基于资源测绘和技术发展的科罗拉多州适用地热用途以及未来的潜在应用 ● 地热开发的影响和考虑因素,包括土地使用、水考虑因素、空气影响考虑因素等 ● 包括发布用于创建研究内容的大量数据
2020年完成的第二阶段计划的第二阶段包括生命周期成本分析(LCCA),以将拟议的系统设计与“照常业务”方法进行比较。创建LCCA阐明了拟议计划的财务影响,并证明了通常非财务考虑。例如,包括史密斯的代理碳价格,以量化受监管的二氧化碳排放的未来潜在成本以及史密斯排放的社会成本。此外,LCCA提供了一种与改进系统相关的程序福利进行比较的机制(例如,拟议设计的实施将为史密斯校园的另外20座建筑物提供中央空调)。这将为大学提供额外的气候弹性,程序化的灵活性以及为学生提供更好的体验。我们通过在“照常”案例中将空调添加到20座建筑物中的预期成本来显示在比较中增加空调。最后,马萨诸塞州将为基于热泵的技术提供大量的激励付款,这些技术是从未来案例的“商品”部分中减去的。
在本文中,我们描述了一种新型 CPGES,称为地球电池扩展 II (EBE II),它使用大型表面储罐或气量计在接近大气压的条件下储存二氧化碳。这使得电池放电阶段最多可产生 260 MW e 的电力,而单靠 CPG 只能产生 2.5 MW e。此外,新的 CPGES 系统可以配置为生产可在接近大气压下升华的固体 CO2(干冰),提供 -78 °C 的散热器,可用于一般冷却目的,特别是用于从空气中低温捕获二氧化碳。反过来,这种二氧化碳可用于开发更多这样的 CPGES 系统。如果不需要散热器,可以通过增加(额外)级来优化涡轮机,从而增加电力输出而不会形成干冰。
2地球物理与太空科学研究所,匈牙利,匈牙利9400,匈牙利3József和ErzsébetTóth,地理与地球科学学院地质学系,ElteeötvösLorándUniversity,Budapest 1117 3584,荷兰