地热发电厂 (GPP) 的地热流体含有高含量的不凝性气体 (NCG),已证明其能源生产会对环境产生影响,如果不采取纠正措施,这种影响可能会很严重。位于土耳其 (Denizli) 的 Kizildere 3 U1 地热发电厂的地热流体含有高百分比的 CO 2 ,其中 99% 的 NCG 部分(占地热流体质量的 3%)是作为相关案例研究来实施一项新创新,即重新注入 NCG,以减少排放到大气中的 NCG 量。为了计算工厂目前造成的环境影响(基线);以及通过创新(重新注入)可以实现的潜在环境影响减少量,我们开发了生命周期评估 (LCA) 计算。收集了能源转换周期所有相关阶段的原始数据,并在必要时补充了来自其他地热发电厂研究的二手数据。基线环境评估的主要结果表明,由于发电厂建筑施工、发电设备和分布式机械及基础设施中使用的材料,建设阶段是影响最大的阶段;运营阶段的影响主要由地热流体成分决定。从这个意义上讲,在土耳其站点将二氧化碳回注到水库将防止试点站点每年排放 1,700 吨,以及 GPP 生命周期内排放的总排放量的 10%。
抽象地热流体将重金属元素带到表面,其中之一是砷(AS)。砷在地壳中自然存在,土壤中存在,然后可以在空气,水和表面环境上进入矿物质。以气体的形式,砷与岩石的温度,挥发性元件的温度有关,仅在高温下释放。在这项研究中,我们将研究砷的特征,砷动员以及如何在几种条件下表面释放砷气体。基于智利,在火山区的参考文献中说,砷气体含量与该区域具有高温并且在表现类型上有多种条件。从印度尼西亚不同地热区域的两次验证中,我们与参考文献相同。基于此,我们假设地热区域上的砷气体含量与岩石的高温相关,在一般中,我们称其为热源。关键字:砷气体,温度。引言地热流体带有重金属元件,例如Ag,Au,Cu,Sb,Ti,其中一种是砷(AS)(AS)(Brown and Simmons,2003)。砷可以在地壳上发现,并且自然地以高温表面浮出水面。基于对拉丁美洲的研究(Simfors等,2020年)和先前对印度尼西亚的研究,尤其是在地热区域(Taufiq,2021),我们可以假设砷气体含量与高温之间的相关性。数据和方法1。在这项研究中,我们想评估和概述先前研究的假设,其中几种有关砷气体的更新引用,以了解砷气体如何动员,特征气体以及与高温相关。地热流体地热液,含有游离硫酸(SIO 2),盐酸(HCL)和Hydroflouric(HF)酸(Gupta和Roy,2007年)。在低温地热流体的情况下,流体发展所涉及的过程通常是溶解原代矿物质和次级矿物质的沉淀,其程度取决于温度和停留时间。对于高温地热流体,预计会有更多的水岩相互作用,从而导致较高的岩石衍生成分。此外,在火山高温系统中,预计将期望沸腾和凝结的影响以及可能与岩浆挥发物混合。从地热流体的不同起源来看,有些流体与其他液体相比拥有更多有关基础地热系统的信息(Armansson等,全部,2022年)。
摘要 本研究旨在全面调查由地热能驱动的单效水/溴化锂吸收式制冷机的性能。由于吸收循环被视为低品位能量循环,这种用低品位能量排出单闪蒸地热发电厂流体的创新想法将是一种高效、经济且有前途的技术。为了检验这种方法的可行性,考虑评估位于阿联酋沙迦的一栋住宅建筑的 39 kW 制冷能力,该能力是使用 MATLAB 软件计算的。根据获得的冷却负荷,对所需的水/溴化锂单效吸收式制冷机进行建模并进行讨论。使用工程方程求解器软件 (EES) 对所提模型在不同条件下的详细性能分析。根据获得的结果,所提系统设计的主要因素是热交换器的尺寸和输入热源温度。结果以图表形式呈现,表明地热流体温度和质量流量以及溶液热交换器效率对制冷机热性能的影响。此外,还给出了吸收式制冷机各部件尺寸对满足空间供暖的冷负荷的影响。当发电厂的生产井温度为 250 ℃ 、分离器压力为 0.24 MPa 、冷凝器压力为 7.5 kPa 时,单闪蒸地热发电厂的热效率约为 13%。结果表明,当地热流体温度为 120 ℃ 时,溶液热交换器效率为 0.9 时,性能系数 (COP) 达到约 0.87 。
可再生能源 - 地热能:煤炭部已发起了一个破碎项目,以利用地热能源进行发电。这个试点项目位于SCCL命令的Manuguru地区,基于闭环二进制有机朗金周期(ORC)过程技术。目的是在印度建立第一个20kW试点示范单元,利用地热流体作为热源。该项目旨在生产清洁,可靠和高效的电力,同时标准化和优化发电成本。最终目标是确保商业生存能力的不间断电源,使流程化,建立扩展模型,并注册知识产权(IPR)以获得概念证明。
从地热来源作为一种可持续能源类型的电力生产在我国越来越普遍。二元电厂地热能发电厂是借助地热流体热量到有机排名(ORC)的系统。对周期和构成周期的每个系统元素的能量和Exergia分析均已详细进行。工程方程求解器(EES)软件已用于这些分析。n-pentan用作ORC系统中的工作流程。由于计算,整个系统的能源效率为6%,并且发现自行量为45%。根据系统的不同工作参数的产量变化已通过图形证明。发现发电厂中最高的EXERGIC损失为6.12 MW(占Exergia的整个损失的26%)和空气冷凝器2。在研究中,提出了各种建议和建议,以减少热损失并提高系统效率。
地热能科学与应用是 E44.15 地热田开发、利用和材料分委员会标准制定工作的重点。E44.15 标准通过提供一致的术语和实践及测试方法来评估地热资源的质量、确定地热硬件的材料兼容性以及定义电力转换技术的性能,从而改善了沟通。最广泛接受的 E44.15 标准是 E1675,用于对地热流体进行化学分析取样。E1675 在 17 个国家/地区用于指导收集管道中存在的蒸汽和液相的代表性样本。为了进一步推动地热能技术的发展,E44.15 已开始制定一项新实践,旨在定义闭环地热热交换器的安装、测试、调试和维护要求。
地热能科学与应用是 E44.15 地热田开发、利用和材料分委员会标准制定工作的重点。E44.15 标准通过提供一致的术语和实践及测试方法来评估地热资源的质量、确定地热硬件的材料兼容性以及定义电力转换技术的性能,从而改善了沟通。最广泛接受的 E44.15 标准是 E1675,用于对地热流体进行化学分析取样。E1675 在 17 个国家/地区用于指导收集管道中存在的蒸汽和液相的代表性样本。为了进一步推动地热能技术的发展,E44.15 已开始制定一项新实践,旨在定义闭环地热热交换器的安装、测试、调试和维护要求。
消化 - 地热业务运营中的挑战之一是由于井下降速度的下降速度,生产力下降,每年的范围为8-10%,以免增加。有几种方法可以维持地球业务的连续性,即钻井井,对研究和研究进行优化,并优化现有的地热生产井。一种快速的方法是优化具有高井口压力(WHP)的现有生产井,以通过更改尺寸或添加新管道来增加蒸汽产量,以期WHP会下降并且地热流体产生增加。PLTP Lahendong单元6由PT PGE在Minahasa Regency拥有的是利用地热流体生产出售给PLN的电力的工厂之一。PLTP单元6 LHD -Y -Y -Y -YD PLTP发电机的蒸汽供应之一中存在一个问题,因此需要通过添加并行并连接到同一主管道的新管道来需要其他LHD -X供应井。在确定优化过程中成功水平时需要进行全面的研究,因为在储层方面存在限制因素,即下降率和储层排水速率。LHD-X井可以根据研究的结果和可达性输出曲线图的数据进行优化,并使用管道应力分析(PSA)研究支持。土壤研究的研究。之所以没有这样做,是因为它位于现有的WellPad的位置,该位置是以前的数据报告。在PT PGE和Standard International中应用适用的标准成为一件重要的事情,因此可以避免使用不当设计引起的失败风险,同时优先考虑健康和环境保护(K3LL)。在Lahendong单元6 PLTP上进行的案例研究表明,使用Hysys模拟和管道压力分析(Caesar II)来确定新管道的尺寸非常精确,以便获得12个管道的大小,以降低可能损坏管道的压力下降风险。最后阶段包括拍卖过程和技术执行,重点是遵守焊接和安全标准。此过程的整个过程旨在确保发电量的蒸汽供应的可持续性并保持运营效率。
第 C2 章 定义 C202 一般定义 沼气。一种碳氢化合物混合物,在 60 华氏度和 1 个大气压下为气体,通过有机物的厌氧消化产生。 生物质。来自植物、动物和/或微生物的非化石化和可生物降解的有机材料,包括农业、林业和相关行业的产品、副产品、残留物和废物以及工业和城市废物的非化石化和可生物降解的有机部分,包括从非化石化和可生物降解的有机材料分解中回收的气体和液体。 现场可再生能源。来自太阳辐射、风、波浪、潮汐、垃圾填埋气、沼气、生物质或地球内部热量的能源。提供现场可再生能源的能源系统应位于项目现场。 在建筑工地收获的可再生能源资源。可再生能源。来自太阳辐射、风能、波浪能、潮汐能、垃圾填埋气、沼气、生物质能或从地热流体或蒸汽中提取的能源。