航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
a)目标; b)被抵消的影响数量; c)提出的偏移类型(直接/间接); d)位置(包括地理参考地图)和拟议的直接偏移的适用性; e)当前的土地任期或拟议的未来(例如在目前供水的区域)的任何拟议偏移以及确保持久保护位点保护并管理撞击寿命的偏移的方法; f)昆士兰州政府或雷德兰市议会的行动的性质和程度的性质和程度是实施拟议的偏移; g)整体发展的分期将如何影响抵消的交付; h)要实现的具体环境成果,并参考相关的法定恢复计划,保护建议和减排威胁计划的推理; i)完整的“偏移指南”。所有用于确定项目足迹(包括栖息地质量得分)的偏移量的所有数字都必须使用合适且可重复的框架得出。这包括临时里程碑,以便支持者可以证明他们有望实现提出的偏移结果; n)如果达到触发价值,以及如何管理环境事件和紧急情况,将要实施潜在的纠正措施; o)角色和责任(清楚地说明谁负责活动); P)审核和审查机制;和还必须提供有关每个框架的详细信息; j)风险评估; k)环境管理活动和缓解措施,包括行动时机; l)监视程序,必须包括:绩效指标(明确而简洁的标准,对结果的实现是对测量结果的),该计划能够准确可靠的测量值结果(按绩效指标测量的时间结合结果)(按绩效指标进行衡量),其中可能包括监测和频率的指示(是否要在范围内)确定范围(如果要在范围内),请确定范围的范围,是否可以在范围内确定范围,是否可以在范围内确定范围,是否可以在范围内确定范围。实现,并为自适应管理提供信息)和触发纠正措施的值; m)将测量所提出的偏移结果的细节和特定时间结果关键绩效指标(KPI)。
目前,美洲地区疫苗可预防疾病爆发风险达到 30 年来的最高水平,五分之一的一岁以下儿童未能得到充分保护,无法预防多种疫苗可预防疾病。 泛美卫生组织主任 Jarbas Barbosa 在本年度疫苗可预防世界运动的启动仪式上表示:“泛美卫生组织正在与各国合作,重振免疫计划,并充分利用这一关键公共卫生工具,挽救生命,保护本地区人民的健康。” Barbosa 博士在正式启动疫苗可预防世界运动的小组讨论上发表讲话,政府、学术界、民间社会和青年代表与他一起讨论了提高该地区免疫接种率的挑战、机遇和策略。 活动期间,巴拿马第一夫人 Yazmin Colón de Cortizo 女士、巴西卫生部长 Nísia Trindade Lima 博士、巴巴多斯卫生和健康部长 Jerome Xavier Walcott 先生也通过视频致辞,美国疾病预防控制中心主任 Rochelle P. Walensky 和比尔及梅琳达·盖茨基金会全球发展部总裁 Chris Elias。泛美卫生组织主任表示,过去十年该地区的疫苗接种率一直在下降,而新冠肺炎疫情导致卫生服务中断以及错误信息引发的犹豫加剧,使问题进一步恶化。他表示:“然而,新冠肺炎疫情也为我们提供了一个机会,它使泛美卫生组织和各国能够加强合作,制定国家免疫计划,培训医护人员,并加强冷链运营。”泛美卫生组织主任表示,凭借高层政治承诺和社区和社会的参与,他“相信该地区能够像过去一样重新夺回免疫领域的领导地位”。他还呼吁各国利用创新手段改革免疫计划。这包括使用地理参考工具收集疫苗数据以指导干预措施、使用工具快速识别操作差距,以及使用社会和行为数据和策略来解决疫苗犹豫问题。在过去 20 年里,VWA 一直是该地区免疫计划为民众提供疫苗的最重要举措。该倡议帮助
确定积雪深度的空间分布不仅对于与饮用水供应或水力发电相关的民用目的至关重要,而且对于雪、水文和环境研究中的多种应用也至关重要。然而,积雪深度在空间和时间上都变化很大。因此,传统和最先进的积雪监测方法并不总是能够捕捉到如此高的空间变化,除非采用非常昂贵的解决方案。在这项研究中,我们提出了一种新方法,旨在通过利用地球科学研究环境中的两种低成本和新兴技术来提出解决问题的方法;运动结构 (SfM) 数字摄影测量和无人机 (UAV)。这些技术相结合的优点在于,它们可以以较低的运行成本和较少的工作量提供大面积的精确高分辨率数字高程模型 (DEM)。所提出的方法将利用这一资产,在地理参考雪面(雪 DEM)与其相应的底层地形(地形 DEM)之间进行减法,从而提供雪深分布图。为了在小规模上测试所提出方法的可行性和效率,在上述背景下调查了六个不同的积雪区域。这些区域的面积从 900 到 51,000 平方米不等,其中两个位于斯瓦尔巴群岛朗伊尔城附近,四个位于西格陵兰岛安登峡湾附近。调查在雪面类型、底层地形复杂性、亮度条件和所用设备方面有所不同,以评估该方法的适用范围。结果呈现为六张雪深分布图,并通过比较估计的雪深和一组质量控制点上探测到的雪深来验证。根据区域不同,探测到的雪深与估计的雪深之间的平均差异从最佳情况的 0.01 米到最坏情况的 0.19 米不等,同时空间分辨率范围从 0.06 到 0.1 米。彻底调查了每种情况的误差源,并评估了通过使用雪面和相应的底层地形中可见的公共地面控制点对 DEM 进行地理配准可以进一步减轻误差。在进行的测试中,该方法没有受到该区域的任何特定表面特征或任何调查条件的特别限制。尽管是在小规模区域进行测试,但通过考虑这些初步结果,该方法有可能成为一种简化程序,允许重复绘制雪动态图,同时降低运行成本,并且不会放弃获得高精度和高分辨率。
关键词:无人机摄影测量、快速测绘、遥感、地震应急、3D 模型、损害评估 摘要:自 2016 年 8 月以来,意大利发生的多起地震群表明,深化测绘研究对于验证新战略的重要性,这些新战略旨在快速测绘和记录不同可访问和复杂的环境,例如城市环境和受损的建筑遗产。在应急响应中,技术进步的关键利用应该为预警、影响和恢复阶段获取和有效组织高比例的可靠地理空间数据。为了解决这些问题,哥白尼 EMS 现已在意大利中部地区的即时和广泛损害侦察中发挥了重要作用。然而,遥感数据的使用仍然受到视点、尺度和可检测细节问题的影响。事实上,无论是机载还是卫星拍摄的天底图像,都极大地限制了这些产品的可信度。无论是在第一次实地工作评估中,还是在随后的解释性损坏检测和快速制图生产的操作方法中,操作员参与的主观性仍然是一个悬而未决的问题。为了克服这些限制,引入无人机平台进行摄影测量,在节省时间、操作员安全、可靠性和结果准确性方面已被证明是一种可持续的方法:天底和斜向积分可以提供大型多尺度模型,其中包含与立面条件相关的基本信息。在意大利中部地震事件中进行的这项研究将重点关注无人机摄影测量在两个记录地点的潜力和局限性:佩斯卡拉德尔特龙托和阿库莫利。在这里,目的不仅限于描述一系列地理参考、块定位和多时间联合配准解决方案的策略,而且还要验证实施的管道作为工作流程,该工作流程可以集成到早期影响活动中的紧急响应操作干预中。因此,可以使用这种 3D 度量产品作为参考数据,以显着提高典型目视检查和测绘的可靠性,与传统的天底机载或卫星产品并驾齐驱。展示了在两个受损村庄进行的无人机采集,以强调嵌入在 DSM 重建和 3D 模型中的空间信息的含义,支持更可靠的损害评估。
随着移动设备成为人类存在和活动的代理,移动运营商收集的数据集(即呼叫详细记录(CDRS))被公认为是研究人类行为的常见工具,在多种研究中和行业中,社会学[1],例如,流行病学[2],运输[3],交通[3],[4](CF>)图1a)。CDR描述了与操作员网络交互的每个移动设备生成的时期和地理参考事件类型(例如,呼叫,SMS,数据)(参见表I)。 它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。 然而,现实世界中CDR对研究的剥削面临许多局限性(参见 §ii)。 首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。 第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。 第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。 第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。 本文介绍了实施CDR的自动生成,以解决上述挑战。表I)。它们包括城市,地区或乡村地区,通常涵盖长期(月或数年);当今,没有其他技术提供同等的人均精确范围。然而,现实世界中CDR对研究的剥削面临许多局限性(参见§ii)。首先,可访问性:CDRS数据集未公开可用,施加了严格的移动运营商协议。第二,可用性:CDR通常以汇总形式(即分组的迁移率流和粗时空信息)提供,限制了相关分析的精确性。第三,隐私:即使是匿名化的CDR,CDRS描述了用户习惯的敏感信息,这使他们的共享性硬化[5]。第四,灵活性:限制访问CDRS的限制了高级研究,需要在人口规模,持续时间或地理覆盖范围内进行数据丰富。本文介绍了实施CDR的自动生成,以解决上述挑战。尤其是(1)我们通过建立这种生成的痕迹的范围并描述它如何为研究进展提供新的途径,详细介绍了这种解决方案的动机,(2)我们通过提出相关要求和挑战来分享对现实CDR生成的可行性研究。
精准农业与灌溉 – 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O’Shaughnessy,美国农业部农业研究局农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O’Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,P.O.抽屉 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要。精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际范围内田间和田间变异的需求。自 20 世纪 80 年代美国现代 PA 诞生以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。全球定位系统 (GPS) 可供公众使用。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业经营的主流工具,早期包括施肥,其次是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监督控制系统的设备允许将预先确定的场地特定处方图下载到设备中,并用于关闭喷洒系统,例如,当喷洒系统经过水道时。支持 GPS 的收割设备生成的产量图是用于场地特定管理的第一批数据之一,由于缺乏共变现场数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率施肥,从而生成肥料需求处方图。或者另一个例子,基于多卫星传感器融合的 30 米分辨率作物用水图进行空间可变灌溉管理。许多较为成功的 PA 技术都涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。此类主动和直接 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。
精准农业与灌溉 — — 美国当前观点 Steven R. Evett,美国农业部农业研究局自然资源与可持续农业系统代理副局长,steve.evett@ars.usda.gov Susan A. O'Shaughnessy,美国农业部农业研究局农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Susan.O'Shaughnessy@ars.usda.gov Manuel A. Andrade,美国农业部农业研究局赞助的橡树岭科学与教育研究所农业研究工程师,邮政信箱 10,2300 Experimental Station Road,Bushland,TX 79102,美国,Alejandro.Andrade@ars.usda.gov 摘要精准农业 (PA) 作为农业经营的概念框架,满足了管理农场、流域、区域和国际田间和田间差异的需求。自 20 世纪 80 年代美国全球定位系统 (GPS) 向公众开放以来,PA 的使用方式、所涉及的目标以及支持它的技术发生了巨大变化。结合最初为卫星图像开发的地理信息系统 (GIS) 计算机技术,PA 成为农民规划特定地点农业作业的主流工具,早期包括施肥,随后是播种率、种子品种、农药喷洒,现在是特定地点灌溉。配备 GPS 转向和位置感知监控系统的设备允许将预先确定的特定地点处方图下载到设备中,并用于例如在喷洒系统经过水道时关闭喷洒系统。支持 GPS 的收割设备生成的产量图是用于特定地点管理的第一批数据之一,由于缺乏共变田间数据和基于土壤时空特性如何影响植物发育的充分决策支持系统 (DSS),结果往往令人困惑。然而,这种被动和间接的 PA 已经发展到可以提供更强大的解决方案,例如,根据地理参考土壤采样提供可变速率的肥料施用,从而生成肥料需求处方图。或者再举一个例子,基于多卫星传感器融合的 30 米分辨率作物用水地图进行空间可变灌溉管理。许多更成功的 PA 技术涉及机载传感器系统,该系统将数据提供给嵌入式计算平台,从而对设备进行实时调整。这种主动和直接的 PA 系统使用现代技术,例如,在有杂草时打开喷洒设备,否则关闭,或者在非生物胁迫传感器指示作物缺水时打开可变速率灌溉喷嘴。此类监控和数据采集 (SCADA) 系统依赖于基于对生物物理学和生物系统的复杂理解的算法。如今,计算能力、数据采集和管理基础设施、新建模范式和空间决策支持系统的融合为 PA 带来了新的可能性。PA 服务的提供者现在包括从国家到地方各级的政府机构、私人提供者(通常使用来自政府地面、空中和卫星传感系统的公开数据)、大学推广系统和农民合作社。数据来源范围从公共领域到农民或第三方持有的私人数据。有关数据标准、数据共享、数据所有权以及公共和私人权利的问题进一步增加了现代 PA 的复杂性,但公共和私人机构都在积极解决这些问题。