● 印度之所以能实现全球最低的太阳能价格,得益于有利的政策和监管框架,如透明的大规模反向拍卖、主动的输电连接、有保障的购电协议,以及取消/减少的国内含量要求
本文档中报告的发现是由Defra的土地使用分析和研究计划产生的。该计划是跨学科的,并整合了空间建模,系统分析,基于地点的研究和社会经济分析。它是英国土地使用研究和分析计划生态系统的一部分。通过包括皇家学会,莱斯特大学,埃克塞特大学的LEEP研究所,英国生态与水文学中心,RSPB以及食品农业和乡村委员会(FFCC)等组织的一系列更广泛的出版物或与组织的合作告知。研究计划,例如净零,自然与人枢纽的土地利用以及战略研究反映了我们对集体土地使用专业知识的投资,将学者,决策者和其他利益相关者汇总在一起,以提供设计和提供有效政策的广泛证据,以影响对土地使用的影响。
收到2024年2月27日; Accepted 15 th April 2024 ______________________________________________________________________________ Abstract Snake bite remains a public health problem in many countries including Nigeria;因此,搜索蛇抗蛇毒抗性已加剧。在这方面有可能有用的一种植物是pachycarpus bisacculatus根(苦黄油)。确定这项研究; Pachycarpus Bisacculatus根的水性,N-己烷,甲醇和乙酸乙酸乙酯提取物的近端,植物化学。通过浸渍获得的这些提取物进行定性和定量的植物化学筛选。使用标准方法进行了该植物的近端,元素,抗营养成分。获得的结果为:水分含量(71.56±0.06,7.53±0.37)%,粗蛋白(3.19±0.19,1.92±0.05)%,粗纤维(11.33±0.31,3.98±0.28)% (4.68±0.17,2.32±0.32)%,碳水化合物(72.21±0.24,19.92±0.48)分别为干燥和新鲜的根。元素含量表明CA的水平最高,而Zn的水平最低。未检测到 al,si,v,pb。抗营养成分显示:草酸盐(1.68±0.02 mg/100g),单宁蛋白(7.10±0.78 mg/100g),植酸(8.47±0.25 mg/100g)和cyanic糖苷(0.03±0.01 mg/100g)。水溶液中的提取产率为21.068%,乙酸乙酯的1.6391%。结果表明,pachycarpus bisacculatus的根提取物含有生物活性化学物质和微量营养素,这些化学物质和微量营养素可能负责该植物报告的药用特性。关键字:近距离;元素;营养;抗域; pachycarpus bisacculatus;抗蛇毒液____________________________________________________________________________________________________________
摘要:我们显然是第一次研究微纳米化等离激光激光的阈值条件,在H极化情况下,在其内部对称地放置在其内部的圆形量子激光。我们假设量子线是由非磁性增益材料制成的,其特征在复杂折射率的“主动”假想部分。激光综合等离激元效应的出现标志着当代光子学的重要趋势。在这里,石墨烯为贵金属提供了一种有希望的替代方法,因为它具有在红外线和Terahertz(THZ)光谱上维持等离子 - 孔龙天然表面波的能力。使用的创新方法是激光特征值问题(LEP),它是经典的电磁场边界值问题,适合于活性区域的存在。它是为交付特定于模式的发射频率而定制的,该发射频率纯粹是真实的,在阈值和活性区域的增益指数的值是使频率实现的必要条件。使用量子kubo形式主义表征石墨烯的电导率。,我们将所考虑的纳米剂的LEP减少到带状电流的超单向积分方程,并通过NyStrom-type方法对其进行离散。此方法是无网状的,并且在计算上是经济的。离散后,获得矩阵方程。所寻求的特定模式对{频率和阈值增益指数}对应于矩阵决定符的零。应注意,如果离散化顺序逐渐更大,则可以通过数学上确保与精确的LEP特征值的收敛性。识别和研究了两个模式的家族:量子线的模式,被石墨烯带的存在和条带的等离子体模式扰动。发现所有等离子体模式的频率和量子线的最低模式被发现通过改变石墨烯的化学潜力进行了充分的调整。用于等离子体模式频率和阈值的工程分析公式。我们认为,所提出的结果可用于创建单模可调微型和纳米层。
摘要:对流感的治疗至关重要的是使用抗病毒药,例如Oseltamivir(Tamiflu)和Zanamivir(Relenza);但是,对于这些治疗剂而言,抗病毒药抗性正成为越来越多的问题。RNA依赖性RNA聚合酶酸性N末端(PA N)核酸内切酶是流感病毒复制机制的关键成分,是一个抗病毒靶标,最近经批准Baloxavir Marboxil(BXM)经过验证。尽管BXM取得了临床成功,但BXM表现出对抗性突变的敏感性,特别是PA n的I38T,E23K和A36 V突变体。为了更好地了解这些突变对BXM抗性的影响并改善了更健壮的治疗剂的设计,本研究研究了蛋白质 - 抑制剂与两个抑制剂的关键差异,以及I38T,E23K和A36 V突变体。通过使用两种生物物理方法测量与PA N结合的变化来评估抑制剂结合的差异。用野生型和突变形式的Pa n晶体学确定了两个不同抑制剂的结合模式。总的来说,这些研究对这些突变体的抗病毒抗性机理有了一些深入的了解。■简介流感病毒导致疾病的重大负担,仅在2018/19季节,在美国造成了约3550万例,500,000例住院和35,000例死亡。1个儿童和老年人群特别容易受到复杂的流感病例,占住院和死亡的最大百分比。3,42在19009年大流行期间,非药物干预措施(NPI),例如在家中订单,掩盖,社会疏远和增加的消毒措施在公共场所实现,以防止SARS-COV-2的传播。这也导致全球流感感染在2020/21和2021/22季节中大大减少,这对流感疫苗的年度重新印象产生了影响。重新制作在很大程度上取决于循环菌株的先前传染病季节的数据,以预测即将到来的流感季节最有效的疫苗组成。3因此,预测最佳2022/23疫苗的数据较少,这解释了2022/23季节观察到的流感的实质性复苏。
幸运的是,有许多已知的地区具有合适的地质。我们知道,因为我们一直在探索它们一个多世纪,而不仅要寻找良好的孔隙空间,而且要寻找石油和天然气。14个碳氢化合物(石油和天然气的技术名称)也被发现在被不可渗透的密封或盖子(“储层”)捕获的多孔和可渗透的岩石层中。15的确,耗尽的石油和天然气储存是隔离项目的常见目标。16另一种理想的用于封存的储层是盐水含水层 - 孔层含有孔,可渗透性的岩石层,含有古老海洋的盐水饱和。17像碳固换一样,石油和天然气的生产使用盐水含水层中的孔隙空间来重新注射偶然产生的废水(“生产的水”)进行处置。18石油和天然气运营还将水和二氧化碳注入耗尽的储层的孔隙空间,以提高其生产寿命(“次要或增强的恢复”)。19
8.2.1 在哪里可以找到有关最新版本处理的资料? ...................................................................... 48 8.2.2 如何找到用于处理单个产品的版本? ...................................................................... 48 8.2.3 如何获取有关过去异常或事件的信息? ...................................................................... 48 8.2.4 为什么热通道图像中有时会出现空白区域? ...................................................................... 49 8.2.5 如何从连接点插值到图像网格? ...................................................................................... 49 8.2.6 如何计算 L1/L2 图像中任意像素的采集时间? ...................................................................... 50 8.2.7 如何计算卫星与太阳之间的相对角度? ............................................................................. 50 8.2.8 如何在 1 级产品中将亮温转换为辐射度? ................................................................ 50 8.2.9 如何在 1 级产品中将辐射度转换为反射率? ................................................ 51 8.2.10 如何找到 SLSTR 光谱响应函数? ...................................................................................... 51 8.2.11 如何找到影像中条带的中心? ...................................................................................... 51 8.2.12 什么是填充? ............................................................................................................. 51 8.2.13 什么是孤立像素,它们有用吗? ...................................................................................... 52 8.2.14 为什么影像两侧有一排未填充的像素? ............................................................................. 52 8.2.15 1 级产品中不同云罩之间有什么区别? ............................................................. 53 8.2.16 如果指向标志升起,这意味着什么? ............................................................................. 53 8.2.17 如何在产品清单中查找质量信息? ............................................................................. 54 8.2.18 如何计算 1 级的每像素不确定度? ........................................................... 55 8.3 如果您有疑问 ................................................................................................................ 55
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。