作为注射CO 2,它将开始散布在孔周围,并且由于注射的CO 2比盐水轻,因此它将上升到地层的顶部边界,例如,请参见图3,其中CO 2在注射阶段绘制了CO 2饱和度。在注射阶段,CO 2羽流在所有方向上或多或少地散布,如图4所示。一旦注射停止,CO 2羽流就会进一步扩散,并且从图4中的顶部看到,它也开始向右移动,并且由于重力而靠在地层顶部边界的斜坡上。可以预期,如果模拟将在较长的时间段内,CO 2羽流最终将最终到达模拟域的右边界和顶部边界(从顶部看到)。CO 2羽流的扩散结果很好地拟合在参考文献中报告的仿真结果范围内。1。
以GT量表中地质地层中的二氧化碳和氢存储是针对净零碳排放的两种有希望的策略。迄今为止,与更确定的地下二氧化碳存储(UCS)的知识体相比,对地下氢存储(UHS)的研究仍然相对有限。尽管它们类似的物理过程可以用于加速UHS技术的进步,但现有的区别可能会阻碍直接适用性。因此,这篇综述有助于通过多尺度比较来促进UCS和UHS之间的主要差异的基本理解。这些比较涵盖了影响地下气体存储的关键因素,包括存储介质,陷阱PING机制,各自的流体特性,岩石物理特性和注入场景。他们为我们现有的知识从UCS转换为UHS提供了指导,强调了与这些因素有关的因素与诱捕和损失机制相关的必要性。本文还概述了未来的方向,以解决所确定的关键知识差距,旨在增强地质形成氢和二氧化碳存储的利用。
研究区域的岩石主要在SɵkineTerrane(SɵKinia)中,这是一种古生代到中生代岛弧,在最新的三叠纪到早期的侏罗纪,然后在中间侏罗纪的北美占领之前变形。最新的三叠纪至早期的侏罗纪褶皱与岩浆和沉积的裂缝相同,至少跨度为30 m.y。(图1)。这种畸形在整个哥伦比亚西北部的哥伦比亚西北部记录下来,已被归结为育空 - 塔纳纳和sɵkineTerranes之间的碰撞(Nelson等,2022)。随后在北美祖先的地面上,由地图区域的北部侏罗纪褶皱带记录了,其中包括两个区域北倾式推力,鲑鱼国王鲑鱼和Kehlechoa断层。在国王鲑鱼断层的悬挂墙中是Cache Creek Terrane的岩石,它代表了上部细分区域蛇片,Mafim and BimodalPrimiɵve-coceanic Arc的连续相连,海洋岛屿型基板,以及schiairizza,schiairizza,2012年;白马槽的单位,它代表了最新的三叠纪至侏罗纪早期的同步重叠组合。向南稍稍稍微向南,白马虽然在Kehlechoa断层的悬挂墙中的单位在结构上与SɵKinia并列。
针对士官和军官的高级训练从 29 日起进行。9 月至 1 日。2015 年 10 月,专门讨论佛兰德斯主题。穿越法国和比利时佛兰德斯地区的第一站是古城里尔。在这里我们受到了船长 A 的专业指导。 D.马库斯·克劳尔。重点是沃邦 (Vauban) 风格的堡垒建筑。我们从里尔继续前往伊普尔地区。伊普尔实地考察的重点是堑壕战及其对战争的影响。这里特别深入地探讨了地下战争、采矿战争以及争夺具有重要战略意义的 Wytschaete Arc 山丘的战斗。为了补充实地看到的内容,我们参观了帕斯尚尔战役博物馆。
研讨会组织游览团参观了昆士兰东北部的运营矿山和未开发的矿产资源,这些资源是过去 30 年来现代勘探技术成功应用的结果。勘探地球化学在几个矿床的草根发现中发挥了关键作用,并极大地帮助了许多其他矿床的评估。在区域地球化学采样方面,昆士兰东北部的部分地区是澳大利亚勘探最密集的地区之一。仅从查特斯堡省和德拉蒙德盆地收集的 200,000 多个区域河流沉积物、土壤和岩屑样本就表明了私人勘探公司利用地球化学数据筛选大片土地的程度。
仪器可同时获取多种数据类型(图 1)。主要地球物理系统包括机载重力系统、拖曳式航空磁系统、冰穿透雷达和激光高度计。该飞机的实验目标是恢复布格和自由空气重力异常、精确的磁异常、冰下地形以及冰面的精确描绘。定位和导航仪器包括激光环陀螺惯性导航系统、压力高度计、实时差分 GPS 导航系统、双 GLONASS/GPS 接收器和一套载波相位 GPS 接收器(GLONASS 是俄罗斯全球导航卫星系统)。飞机仪器套件由基站仪器支持,包括一个用于消除昼夜磁信号的基站磁力计、一个带有传输差分 GPS 校正的广播系统的固定 GPS 以及双频载波相位 GPS 接收器。各种仪器所需的定位精度如表1所示,定位系统的精度如表2所示。
第3节:资格要求•扩展了碳存储地点的预先批准的司法管辖区清单,其中包括加拿大的三个省:艾伯塔省,萨斯喀彻温省和不列颠哥伦比亚省。•放松存储深度要求,以便在特定情况下允许浅存储。•澄清以包括证据的示例,以证明未回收碳氢化合物。•基线场景被完善,包括与转运物流和存储站点的重新利用/改造有关的子箱。基线场景的主要决定因素仍然是捕获操作。•与一般规则4.0一致,添加了对联合国可持续发展目标的积极影响的规则。•编辑了非双重计数规则,以更好地反映与ICVCM和《巴黎协定》第6条的一致性。•完善了生物量采购标准,包括扩大某些类别范围(废物)的范围以及对某些标准配方的校正。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
地质调查技术在优化可再生能源项目的选址和确定适合碳储存的地点以缓解气候变化方面发挥着至关重要的作用。本摘要概述了如何使用地质调查技术来实现这些目标。可再生能源开发,特别是太阳能和风能,需要仔细选择地点,以最大限度地提高能源生产效率并最大限度地减少对环境的影响。地质调查有助于评估地下地质、地形、土壤成分和水文条件等因素。这些调查有助于确定具有最佳风能或太阳能资源和适合基础设施建设的地质条件的合适地点。此外,地质调查对于确定适合碳储存的地点至关重要,碳储存是旨在减少温室气体排放的碳捕获和储存 (CCS) 技术的关键组成部分。地质构造,例如深层盐水层、枯竭的油气储层和不可开采的煤层,可作为捕获的二氧化碳 (CO 2 ) 的储存库。地质调查有助于描述这些地层的特征,以评估它们是否适合长期储存二氧化碳,同时考虑孔隙度、渗透性和密封完整性等因素。优化可再生能源项目和碳储存的选址需要全面了解地下地质和环境条件。先进的地质调查技术,如地震成像、遥感和地球物理调查,对于获取详细的地下数据至关重要。这些技术使科学家和工程师能够评估场地适宜性、评估风险并设计有效的缓解措施。总之,地质调查技术是优化可再生能源项目选址和确定合适的碳储存位置的宝贵工具。通过利用这些技术,利益相关者可以做出明智的决策,促进可持续能源发展并减轻气候变化的影响。
我们提出了一种混合可再生能源系统——地热能存储系统 (GeoTES) 和太阳能系统——以提供低成本的可调度电力,时间范围从每日、每周到每季不等。带太阳能系统的 GeoTES 使用聚光太阳能集热器场来产生热水,然后注入沉积盆地以产生合成地热资源。然后,可以在电网需要时调度存储的地热。GeoTES 对于光伏和风能等非灵活可再生技术渗透率高的电网尤其有价值。在这项工作中,我们结合了电力循环模拟工具 IPSEpro 和国家可再生能源实验室 (NREL) 的经济分析工具 SAM,开发了一个复杂的混合模型来评估 GeoTES 的技术和经济潜力。分析表明,在适当的初始充电期内,存储中的热损失几乎可以忽略不计,是一种适合长期储能的技术。评估了各种电力循环选项,并选择了最合适的电力循环进行进一步研究。 GeoTES 系统的年度计算表明,季节性存储 4000 小时可实现 12.4 ¢/kWh e 的平准化存储成本 (LCOS);该值远低于现有的长期存储。与电池和熔盐储热系统不同,GeoTES 的 LCOS 对 8 小时以上的存储时间不敏感。这一结果表明,GeoTES 可以成为未来电力市场上具有竞争力的季节性存储技术。GeoTES 系统的平准化电力成本也经过仔细分析,根据太阳能集热器的价格,其变化范围在 10.0 到 16.4 ¢/kWh e 之间。[DOI:10.1115/1.4047970]