摘要:氢能技术是实现零排放方案和确保许多国家能源独立的最有前途的解决方案之一。氢气被认为是一种绿色能源载体,可用于能源、交通和化工领域。然而,高效安全的大规模储氢仍然具有挑战性。工业中最常用的储氢解决方案是压缩和液化,这两种方法都非常耗能。地下储氢被认为是在不同时间尺度上大规模利用的最经济、最安全的选择。在地下地质构造中,盐穴是最有前途的储氢方式,因为它们具有合适的物理化学和机械性能,即使在高压下也能确保安全高效的储存。本文介绍了地下储存的最新进展,特别强调了欧洲盐穴的利用。讨论了地下储氢的初步经验,并分析了该技术在全球范围内商业化的潜力。在波兰,来自西北和中部地区的盐矿(例如,Rogóźno、Damasławek、Łeba)
封存碳的最佳方式是将所有化石燃料留在地下。这是一个简单的解决方案,而且由于可再生能源价格大幅下降,这个解决方案似乎触手可及。然而,去年全球向大气中排放的二氧化碳比以往任何时候都多(图 1),这表明我们还需要很多年才能实现能源生产完全可再生。与此同时,将二氧化碳封存于地质构造中似乎很有吸引力。碳捕获与封存(CCS)技术包括三个步骤:从烟气中捕获二氧化碳、压缩和运输二氧化碳以及注入地质构造 [1][2]。每个步骤中使用不同的技术并不新鲜,因为在不同的环境中,它们经常用于我们当前的经济中。
大陆架土地法第 40307 条对《外大陆架土地法》 (OCSLA) 进行了修订,授权内政部长在外大陆架授予租约、地役权或通行权,用于“为长期碳封存而向海底地质构造中注入二氧化碳流,提供、支持或直接相关活动”。
分析了智利中部安第斯山脉南部(32 – 34.5 S)上新世至近期大型(N 0.1 平方公里)岩崩的分布和年龄,以确定岩崩触发机制及其对区域景观演变的影响。大多数岩崩发生在西部主科迪勒拉山脉,并沿着主要地质构造聚集。变异分析显示岩崩、地质构造和浅层地震之间存在空间相关性。使用现有的 14 C 和 40 Ar/ 39 Ar 日期以及选定岩崩的新宇宙成因核素暴露年龄校准了相对年代序列。使用岩崩区域分布的经验关系估计了岩崩引起的沉积物产量。在整个第四纪,岩石滑坡将沉积物输送到溪流中,其速率相当于 0.10± 0.06 mm a − 1 的剥蚀速率,而使用短期(20 年)地震记录的估计值为 0.3 − 0.2 +0.6 mm a − 1 。沉积物转移的估计值和岩石滑坡的空间分布反映了一种地貌,其中构造和地质对剥蚀的控制比气候更为重要。© 2008 Elsevier B.V. 保留所有权利。
为了进一步提高 MAD-XR 在浅水中的有效性,作为一种选择,可以绘制给定作业区域中地质构造引起的自然磁场。然后,MAD-XR 软件使用这些映射数据来预测地质的磁性贡献并将其从测量中消除,从而有效地执行完整的环境变化检测以将异常与新出现的来源(例如潜艇)隔离开来。地磁测绘最好提前完成,但可以在以前未测绘的区域的作业期间完成。此功能目前正在开发中,将作为升级选项提供。
委员会了解到,人们对碳捕获和储存项目有着浓厚的兴趣,这些项目将二氧化碳永久封存在地质构造中,而不是将这种污染物排放到空气中。委员会为该机构在地下注入控制计划内与 VI 级井地质封存相关的工作提供不少于 4,000,000 美元的资金,以帮助该机构发展专业知识和能力。这些资金应由该机构用于迅速审查和处理来自各州和部落的 VI 级优先权申请,并在各州尚未通过直接与许可证申请人合作获得优先权的情况下尽快直接实施该法规。委员会还指示该机构与海洋能源管理局协商,提供评估,
几十年来,联邦政府一直资助各种努力,探索在燃烧化石燃料作为能源的同时减少温室气体 (GHG) 排放的可行性。碳捕获与储存 (CCS) - 在源头捕获人造二氧化碳 (CO 2 ) 并在其释放到大气中之前将其储存起来的过程 - 已被提议作为在继续使用化石能源的同时减少大气排放的技术解决方案。永久性地下碳储存,称为地质封存,是将流体(包括气体或液态 CO 2 )长期封存在地下地质构造中。作为提高老化油藏产量的提高采收率 (EOR) 作业的一部分,可以注入 CO 2 并附带储存一部分。
天然气主要成分是甲烷,甲烷是一种由一个碳原子和四个氢原子组成的分子 (CH4),属于碳氢化合物。天然气在天然纯净状态下无色无味,但通常会添加硫醇或其他气味剂以便于检测。天然气还具有高度可燃性,释放大量能量,排放量比煤炭和石油等燃料少。天然气在地质构造中以不同的方式存在:作为与原油相关的气相、作为溶解在原油中的气体、作为与任何重要原油无关的气相或作为超临界流体。如果天然气中含有大量与甲烷混合的天然气液体 (NGL)(例如乙烷、丙烷和戊烷),则天然气为“富”或“湿”。相反,如果天然气主要由甲烷组成,则天然气为“贫”或“干”。3 分离过量的 NGL