鉴于生物多样性和对生态系统的了解,采样在海洋调查中变得越来越重要。随着 GIS 平台的采用,可以在底栖和远洋环境中查询样本的相关性,从而最大限度地提高科学家对海洋的了解。因此,仔细分析、存储和解释对于保持随后的数据库达到高标准至关重要。样本描述很容易受到人为偏见的影响,对沙子和淤泥之间沙粒大小的错误判断会影响海洋建模的输出,并可能导致遗漏受气候变化严重影响的区域。因此,我们试图在本文档中预先消除数据收集过程中可能存在的任何歧义或分歧。
磁共振成像 (MRI) 已成为脑部活体检查的主要成像技术。除了解剖和功能 MRI 之外,扩散 MRI (dMRI) 还广泛用于临床和研究,以评估组织结构和纤维方向,尤其是在神经系统中。虽然扩散张量成像是评估方向测量的最广泛方法,但也提出了其他更复杂的模型。然而,dMRI 的验证是一项具有挑战性的工作,需要专门的测试样本。本文显示,双光子聚合 (2PP) 3D 打印允许制造此类测试对象,也称为幻影。在升级 2PP 制造工艺后,可以创建具有高空间分辨率和足够尺寸的 3D 结构,以便在人体 7T MRI 扫描仪中成像。这些幻影可靠地模拟了人类白质,从而能够系统地验证和确认 dMRI 数据及其分析。 3D 打印结构包含多达 51,000 个微通道,可模拟较大轴突的扩散行为,每个微通道的横截面积为 12 × 12 μ m 2,平行和交叉排列。获取的 dMRI 数据显示并验证了这些新型脑模型的实用性。
机器学习和基于深度学习 (DL) 的神经解码器的最新进展显著提高了使用头皮脑电图 (EEG) 的解码能力。然而,DL 模型的可解释性仍然是一个未被充分探索的领域。在本研究中,我们比较了多种模型解释方法,以确定最适合 EEG 的方法,并了解这些方法中的一些方法何时可能失败。我们开发了一个模拟框架,通过与地面真实特征进行比较来评估十二种基于反向传播的可视化方法的稳健性和灵敏度。这里测试的多种方法在随机化模型权重或标签后显示出可靠性问题:例如,显着性方法是 EEG 中最常用的可视化技术,它不是特定于类或模型的。我们发现 DeepLift 始终准确且稳健,可以检测这里测试的三个关键属性(时间、空间和频谱精度)。总体而言,本研究回顾了基于 DL 的神经解码器的模型解释方法,并提出了建议,以了解这些方法中的一些何时会失败以及它们可以在 EEG 中捕获什么。
Enhance.ai、Convert.ai 和 Segment.ai 共同构成了 NIS.ai 模块。它采用基于一小部分代表性样本的卷积神经网络从地面实况数据中学习。软件界面可以轻松将深度学习应用于地面实况,无需设计复杂的神经网络并将训练数据应用于其中。自动化工具获取这些训练数据并将其应用于神经网络以识别模式。然后可以将 N³ 重复可靠地应用于类似样本,以比传统技术快得多的速度处理或分析大量数据,而无需 AI 培训或编程知识。这确保没有用户偏见,甚至允许修改完整的数据集。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验对使用伪距冗余的传统实时误差分析获得的位置误差估计进行了地面实况分析。利用此地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。该动态范围误差模型有效地减少了观察到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
目前,放射科医生面临着过大的工作量,这导致他们高度疲劳,并因此导致不必要的诊断错误。决策支持系统可用于确定优先级并帮助放射科医生做出更快的决策。从这个意义上说,基于医学内容的图像检索系统可以通过提供精心策划的类似示例发挥极大的作用。尽管如此,大多数基于医学内容的图像检索系统都是通过查找最相似的图像来工作的,这并不等同于查找疾病及其严重程度最相似的图像。在这里,我们提出了一种可解释性驱动和注意力驱动的医学图像检索系统。我们在一个大型的公开可用的胸部 X 光片数据集中进行了实验,该数据集带有来自自由文本放射学报告 (MIMIC-CXR-JPG) 的结构化标签。我们在两种常见情况下评估了这些方法:胸腔积液和(潜在)肺炎。作为进行评估的地面实况,查询/测试和目录图像由经验丰富的委员会认证的放射科医生进行分类和排序。为了进行深入而全面的评估,其他放射科医生也提供了他们的排名,这使我们能够推断出评分者之间的差异,并得出定性的表现水平。根据我们的地面实况排名,我们还通过计算归一化的折现累积增益 (nDCG) 对所提出的方法进行了定量评估。我们发现,可解释性引导方法优于其他最先进的方法,并且与最有经验的放射科医生的一致性最好。此外,它的表现在观察到的评分者之间的差异范围内。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验使用传统的伪距冗余实时误差分析获得了位置误差估计,并对其进行了地面实况分析。利用这些地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算出的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。这种动态范围误差模型有效地减少了观测到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
图 1. Wytham Woods 中物种分类的训练和测试样本。图 (a)、(b) 和 (c) 中的彩色点是覆盖在高光谱图像假彩色表示上的地面实况。(a) 和 (b) 中的彩色多边形表示覆盖在高光谱图像假彩色表示上的每种物种的训练和测试样本。颜色表示不同的物种,即蓝色 = Larix decidua、绿色 = Acer pseudoplatanus、红色 = Fraxinus excelsior、黄色 = Fagus sylvatica、紫色 = Quercus robur、棕色 = Betula spp.,白色 = 阴影像素。
将估算范围从目前的 9 种作物扩展到 17 种作物。 主要作物(水稻和小麦)的分区/街区级作物产量预测。 开发国家作物信息门户。 努力整合基于 NAVIC 和 GAGAN 的导航网络,以改进地理标记应用 基于多边形的地面实况,以提高准确性。 设想/实施基于 AI/ML 的方法来改善作物种植面积和产量估算(水稻、小麦、大豆和玉米)。 将各部委提供的各种数据与 ISRO/SRSC/州政府部门提供的地籍信息进行集成,以用于作物保险、统计数据、作物状况等。
可重构原型高架舱可实时、精确地跟踪许多实体(车辆和人类),以获得实验地面实况。小型无人机和地面车辆可同时在大型高架舱内运行,可从四个相邻的人机交互实验室查看。热带高架舱模拟了具有适当地形和植物的雨林,并包括流水特征。室外高地森林提供了具有水和地形特征的额外森林环境。沙漠高架舱提供了一个模拟的沙漠环境,其中有沙坑、天然岩壁以及适当的照明和风。沿海高架舱提供了一个模拟的沿海环境,其中有沉淀池、带有倾斜地板的大型水池和小型流水池。除了环境高架舱外,该设施还设有电力和能源实验室、传感器实验室和机电车间。