2.7.3.GTO 双发发射窗口 2.7.4.GTO 单发发射窗口 2.7.5.非 GTO 发射窗口 2.7.6.发射推迟 2.7.7.升空前发动机关闭 2.8.上升阶段的航天器定位 2.9.分离条件 2.9.1.定位性能 2.9.2.分离模式和指向精度 2.9.2.1.三轴稳定模式 2.9.2.2.自旋稳定模式 2.9.3.分离线速度和碰撞风险规避 2.9.4。多分离能力 第 3 章。环境条件 3.1。一般 3.2。机械环境 3.2.1。静态加速度 3.2.1.1。地面 3.2.1.2。飞行中 3.2.2。稳态角运动 3.2.3。正弦等效动力学 3.2.4。随机振动 3.2.5。声振动 3.2.5.1。地面 3.2.5.2.飞行中 3.2.6.冲击 3.2.7.整流罩下的静压 3.2.7.1.地面 3.2.7.2.飞行中 3.3.热环境 3.3.1.简介 3.3.2.地面操作 3.3.2.1.CSG 设施环境 3.3.2.2.整流罩或 SYLDA 5 下的热条件 3.3.3.飞行环境 3.3.3.1.整流罩抛射前的热条件 3.3.3.2。整流罩抛射后的气动热通量和热条件 3.3.3.3。其他通量 3.4。清洁度和污染 3.4.1。环境中的清洁度水平 3.4.2。沉积污染 3.4.2.1。颗粒污染 3.4.2.2。有机污染 3.5。电磁环境 3.5.1。L/V 和范围 RF 系统 3.5.2。电磁场 3.6。环境验证
地面处理是航空业的重要组成部分。飞机越来越大,地面支持设备越来越多,周转时间越来越快,这些都对提高运营安全性提出了更高的要求。随着空中交通的增长和第三方地面处理公司的激增,机场停机坪上的地面操作变得越来越复杂,而且具有潜在的危险性。确保地面上飞行操作的安全性、可靠性和一致性非常重要。停机坪区域通常是机场最拥挤、最繁忙的区域,飞机周转时间受到很大空间和时间的限制。与航空业的其他领域不同,地面处理部门目前不受飞行运营、空中交通管理和机场运营等领域的监管。但是,一些国家已经计划更好地规范地面处理活动。多年来,航空运营商、机场和地面处理行业以及一些国家监管机构一直关注地面处理过程中飞机受损的程度和范围,以及飞机、乘客和机场工作人员的安全事故发生率。国际上各种团体和组织也继续关注这一问题。《地面处理手册》解决了这些问题,并与行业代表密切合作制定,以借鉴那些在飞机周转操作中“亲自动手”的人员的经验和专业知识。本手册中的指导代表了在该领域得到证实的“公认的行业良好做法”。使用这些材料和指导时应小心谨慎,因为它可能不适用于或不适合所有国家或组织。可能还与保护空侧工作人员的国家职业健康和安全法规有一些重叠;然而,本手册展示了如何将飞机和人员安全纳入适当的安全管理系统 (SMS)。
未来的深空机器人探测器将使用先进的机载自主技术来解决高优先级的科学问题,例如观察快速变化的现象和适应动态环境条件。机载自主技术(例如规划和调度、科学目标识别和基于内容的数据汇总)将带来令人兴奋的全新深空科学任务。然而,传统的操作实践、技能和流程并不是为具有这种机载自主能力的航天器设计的。本文总结了 JPL 进行的为期两年的调查结果,旨在探索地面操作流程、实践和工具需要如何调整才能支持有效使用机载自主技术。特别是,我们确定了需要增强当前工作流程和工具的领域,以适应深空探索机载规划和调度软件的指挥和分析。我们的重点是机载规划和调度:我们确定了必要的变更,以使操作员和科学家能够通过目标和优先级(而不是命令序列)向未来自主航天器的规划和执行系统传达他们的预期意图,并能够重建和解释机载决策和航天器的状态 - 为用户信任自主性提供了一条切实可行的途径,这是全面采用的最大障碍之一。总的来说,这些结果构成了采用机载航天器自主性的关键步骤,这将使人们能够对外太阳系、小天体和海洋世界表面进行新的、更大胆的探索。
国际民航组织的事故定义 B 15 水上迫降和水上降落定义 B 16 空中管道作业 S2(整个模块) 防撞 S2 6 飞机 S2 3–4 乘客 S2 6 飞行员和机组人员 S2 4–5 天气 S2 3 空中作业监督员(AOS) A 3–6 航空运营人证书,授予 B 4 机载防撞系统(ACAS) G 8 机载地球物理 S1(整个模块) 飞机设备标准 S1 4 燃料 S1 7 一般飞行员经验 S1 5 最低机组人员 S1 4 最低调查高度 S1 6 最低调查速度 S1 7 个人设备标准 S1 4 飞行员飞行和执勤时间 S1 5–6 风险评估 S1 3 飞机作业 D(整个模块) 空中管道检查 S2 6–8 寒冷天气 S3 8–15,33–36 认证 D 5 地面作业 D 19–31 夜间作业 S4(整个模块) 规划 D 5–18 航空公司使用政策 A 3 机场、直升机场、直升机停机坪和设施 F(整个模块)寒冷天气操作 S3 26–29 人力资源管理中的 ALARP(尽可能低) B 8,9 酒精地面操作 D 19 飞行员政策 C 25 维护人员 C 31 AMG 结构简介 6 AOS A 3–6 进近和离场 D 20 审计计划 B 16–17 航空顾问角色 A 3 航空政策 A 3
摘要 - 未来的太空探索任务将在很大程度上依靠自主计划和执行(APE)技术来证明航天器的可靠性并降低运营成本。,这将需要对地面操作进行完整的修改,即,从当前指定预先计划的序列的实践来指定高级目标,后来将根据航天器的状态和可感知的环境来详细阐述,后来由板上APE详细说明。特别是,在下行链路期间确定任务结果是一项艰巨的任务。在本文中,我们使用下行链接的通道数据,EVR和至关重要的空间工艺模型重建了航天器在船上执行的操作(即,执行);我们还定量地比较了从“实际”运行与基于地面预测模拟的情况进行比较。要进行此定量比较,我们设计了基于两个相似性分数的N维动态时间扭曲(DTW)技术:(a)与执行任务相关的一项,其成本函数基于基于间隔的基于间隔的广义交叉点,而不是联合; (b)其他与飞船状态有关的其他成本函数基于归一化曼哈顿距离的关系。通过Neptune-Triton系统中多个Flyby的模拟案例研究,我们证明了我们的技术成功量化了ASSCECT的实际实际和预先分析之间的相似性,并评估其“家庭中”与“未家庭”的行为。为了降低相关的误报/负面因素,我们还设计了一个多目标评估指标,这是对任务和时间轴相关的相似性分数的加权总结。
传单编号 44:JAR-OPS 1 AMT 13 第 2 节已更新,以纳入已暂停的 JAA NPA 的第 2 节文本提案 注意:本传单中包含的材料是根据 JAA 行政和指导材料第 4 节:操作,第 2 部分:程序 (JAR-OPS),第 10 章发布的。简介:JAR-OPS 1 第 14 次修订将于 2008 年 7 月 16 日生效,通过封面说明将 JAR-OPS 1 与 EU-OPS(欧洲理事会条例 (EEC) 第 3922/91 号附件 III,经修订)保持一致。然而,由于 EU-OPS 不包含任何以前在 JAR-OPS 1 第 2 部分中包含的指导材料,联合航空当局委员会决定应发布适当更新的 JAR-OPS 1 修正案 14 指导材料。 JAA-LO 和 EASA 选择的首选格式是 TGL(本 TGL 44),它包含 JAR-OPS 1 第 2 节第 13 号修正案中的材料,并使用以下 NPA 中的指导材料进行更新:• NPA-OPS 39B1 HF 通信设备• NPA-OPS 41 全天候操作• NPA-OPS 45 地面操作期间所需的客舱机组• NPA-OPS 52 结冰条件下的客舱机组培训• NPA-OPS 53 噪音消减• NPA-OPS 57A 电子导航数据管理上述 NPA 中的第 1 节材料将纳入 EU-OPS 第 2 号修正案。注意:- 在此 TGL 44 中,可接受的合规方法、解释性/说明材料和咨询通告联合以全页宽度呈现在活页上,每个修订段落都通过发布日期和/或其下的修订号进行标识已修订。新增、修订或删除的文本用粗括号括起来。有意留空
本补充文件实施并扩展了 AFI 10-220《承包商的飞行和地面操作》(DCMA INST 8210-1D)的指导。它适用于所有美国空军飞行活动,主要机组人员被指派或被派往飞行和/或与包括 DCMA INST 8210-1D 的合同组织。本出版物不适用于空军国民警卫队、空军预备役或美国太空部队。本出版物可以在任何级别进行补充,但所有补充文件必须在认证和批准之前发送到本出版物的 OPR 进行协调。使用 DAF 表格 847《出版物变更建议》将建议的变更和有关本出版物的问题提交给 OPR;将 DAF 表格 847 从现场通过适当的职能指挥链发送到 HQ AFMC/A3V。向 HQ AFMC/A3V 提交书面澄清请求,以获得协调/批准。根据 DCMA Inst 8210-1D 第 2 节提交豁免请求。确保根据本出版物中规定的流程生成的所有记录均遵守 AFI 33-322《记录管理和信息治理计划》,并根据空军记录信息管理系统中的空军记录处置时间表进行处置。本出版物中使用任何特定制造商、商业产品、商品或服务的名称或标记并不意味着空军的认可。适用性和范围。DCMA INST 8210-1D 适用于所有政府飞行代表 (GFR)。因此,AFMC/A3,服务豁免机构批准任何美国空军服务 GFR 以及支持美国空军承包商监督的 DCMA GFR 将本补充中的指导应用于其指定的运营。这些 GFR 应用该指导
本任务指南包含以下任务。任务编号 任务标题 命令任务 无 操作任务 O-0204 使用经纬度在地图上定位一个点 O-0205 使用 CAP 网格系统在地图上定位一个点 O-2000 操作飞机 FM 收音机 O-2001 操作飞机音频面板 O-2002 演示飞机收音机的操作 O-2003 网格分区图 O-2004 使用 POD 表 O-2005 操作飞机测向仪 O-2006 执行 ELT 搜索 O-2007 在地面上定位和静音 ELT O-2008 完成任务出击 O-2009 演示空中/地面团队协调技术 O-2010 使用机上服务 O-2011 操作 VOR 和 DME O-2012 操作全球定位系统 O-2013 在航路图上绘制航线 O-2015 演示地面操作和安全 O-2016 演示滑行时的安全 O-2017 讨论坠机后行动 O-2018 操作飞机通信设备 O-2019 使用正确的数字和字符发音 O-2020 使用前言 O-2021 解释紧急信号并演示空中/地面团队协调 O-2022演示扫描模式和定位目标 O-2023 演示减轻疲劳的技术 O-2024 使用航路图 O-2025 跟踪并记录航路图和地图上的位置 O-2101 描述如何检测 ELTS O-2102 演示规划和飞行航线搜索 O-2103 演示规划和飞行平行航路搜索 O-2104 演示规划和飞行爬行线搜索 O-2105 演示规划和飞行基于点的搜索 O-2106 规划和指挥 CAP 飞行 O-2107 准备前往偏远的任务基地O-2108 协助 ELT 搜索 O-2109 协助规划和执行路线搜索 O-2110 协助规划和执行平行航迹搜索 O-2112 协助规划和执行基于点的搜索 O-2115 协助规划和执行爬行线搜索
本任务指南包含以下任务。任务编号 任务标题 命令任务 无 操作任务 O-0204 使用经纬度在地图上定位一个点 O-0205 使用 CAP 网格系统在地图上定位一个点 O-2000 操作飞机 FM 收音机 O-2001 操作飞机音频面板 O-2002 演示飞机收音机的操作 O-2003 网格分区图 O-2004 使用 POD 表 O-2005 操作飞机测向仪 O-2006 执行 ELT 搜索 O-2007 在地面上定位和静音 ELT O-2008 完成任务出击 O-2009 演示空中/地面团队协调技术 O-2010 使用机上服务 O-2011 操作 VOR 和 DME O-2012 操作全球定位系统 O-2013 在航路图上绘制航线 O-2015 演示地面操作和安全 O-2016 演示滑行时的安全 O-2017 讨论坠机后行动 O-2018 操作飞机通信设备 O-2019 使用正确的数字和字符发音 O-2020 使用前言 O-2021 解释紧急信号并演示空中/地面团队协调 O-2022演示扫描模式和定位目标 O-2023 演示减轻疲劳的技术 O-2024 使用航路图 O-2025 跟踪并记录航路图和地图上的位置 O-2101 描述如何检测 ELTS O-2102 演示规划和飞行航线搜索 O-2103 演示规划和飞行平行航路搜索 O-2104 演示规划和飞行爬行线搜索 O-2105 演示规划和飞行基于点的搜索 O-2106 规划和指挥 CAP 飞行 O-2107 准备前往偏远的任务基地O-2108 协助 ELT 搜索 O-2109 协助规划和执行路线搜索 O-2110 协助规划和执行平行航迹搜索 O-2112 协助规划和执行基于点的搜索 O-2115 协助规划和执行爬行线搜索
柯林斯航空航天公司一直在为国防部设计未来军用飞机的起落架。该项目和报告重点关注前起落架阻力支架组件的设计、分析和重新设计。起落架被视为飞机上的主要结构部件之一。虽然起落架可能只占飞机总重量的一小部分,但它承受着巨大的负荷,并且在起飞、降落和地面操作期间必须承受高应力。起落架可能承受拉伸、压缩、扭转、剪切和弯曲。在起落架的设计过程中,必须考虑和分析所有这些因素。起落架设计极具迭代性,正如本报告所示,在最终设计投入制造之前,需要对单个组件以及整个组件进行多次修改。阻力支架对于组件来说至关重要,这绝对适用于起落架。本报告将介绍设计和重新设计阻力支架组件所需的步骤,重点介绍主要部件,例如上部和下部阻力支架、拨动杆、连杆和主轴销。还重点讨论了这些部件的实际结构分析,因为这可能是设计阶段最关键的方面。利用 FEA 分析部件以应用它们在操作过程中将看到的实际负载。FEA 结果可帮助应力分析师发现高应力位置以及弯曲和挠度水平。基于这些结果,可以进行有效的重新设计。请注意,由于这是一个军事计划,因此必须省略所有专有/技术数据才能使用。这意味着无法显示太多实际负载、尺寸或计算。这也包括 CAD 模型中的任何识别特征。因此,所有 CAD 模型都将被简化。已提供尽可能多的细节来展示可靠的设计概念和流程,而不会侵犯柯林斯航空航天技术数据政策。致谢:我要感谢柯林斯航空航天公司允许我将我的工作成果用于我的高级设计项目。我还要感谢我的同事和导师对这个项目的帮助以及我从他们那里获得的所有工程知识。Paul Wang 是我在柯林斯工作期间最优秀的导师。我从他那里学到的所有应对压力的技术技能将贯穿我整个职业生涯。