摘要。本文提出了一种建模方法,旨在季节性地解决全球气候和土壤对陆地生态系统生产和土壤微生物呼吸模式的控制。我们使用卫星图像(高级甚高分辨率辐射计和国际卫星云气候学项目太阳辐射),以及来自全球(1 o)数据集的历史气候(每月温度和降水量)和土壤属性(质地、C 和 N 含量)作为模型输入。卡内基-艾姆斯-斯坦福方法 (CASA) 生物圈模型按月运行,以模拟植物净碳固定、生物量和养分分配、凋落物、土壤氮矿化和微生物 CO2 生成的季节性模式。模型估计的全球陆地净初级生产力为 48 Pg C yr -•,最大光利用效率为 0.39 g C MJ -• PAR。超过 70% 的陆地净产量来自
在美国内布拉斯加州,立方体卫星被用于测量地面水的蒸发量,分辨率达到 3 米。立方体卫星产生的数据与地面气象塔的地面数据进行了比较。尽管这些地面塔也可以成为测量水蒸发量并利用数据预测和检测干旱的解决方案,但使用立方体卫星更为可行。农民维护地面设备并不断检查的成本将高于使用立方体卫星。这些立方体卫星还显示出与地面数据(来自地面仪器)的高度相关性。下面的数据显示了内布拉斯加州三个不同田地的每日蒸发率,以及卫星数据和地面塔数据(红线和蓝线)的相关性。如果将地面塔数据视为可接受值,则卫星数据的 r^2 为 0.86–0.89,平均绝对误差在 0.06 至 0.08 毫米/小时之间。 (Aragon 等人,2021 年),从而展示了如何使用立方体卫星数据来取代这些传统的气象塔。:
• 低地球轨道至地球数据服务,最初面向地球观测市场。 • 旨在实现多任务基础设施。 • 高度自动化和可升级的服务。 • 利用 SSC 对现有 RF 地面网络服务的专业知识。 • 独立服务,稍后将作为 RF 的补充纳入 SSC 的产品组合。 SSC 正在部署光通信地面网络,以提供低地球轨道至地面数据返还服务。
有能力支持选定的澳大利亚机队直升机的部件疲劳寿命验证,最初应用于澳大利亚陆军运营的 S-70A-9 黑鹰直升机。审查了这一要求的含义,并支持评估选定机队正常任务范围的严重程度的必要性。提供了通过测量机队飞机样本中选定部件的飞行状态识别数据和载荷来评估任务严重程度的计划的理由。概述了一项验证选定黑鹰直升机部件疲劳寿命的计划,这些部件受重大服役载荷的影响。审查了支持该计划所需的机载和地面数据系统的一般要求。
AFTF 概念描述了飞行测试设施进一步发展所基于的框架。图 3 中所示的概念由四个主要部分组成:ƒ 数据管理系统;ƒ 地面数据处理系统;ƒ 机载测量系统;ƒ 独立测量系统。数据管理系统 (DMS) 将有关仪器配置的多学科信息存储到数据库中。飞行测试项目经理定义测量通道设计所依据的参数要求。设计人员将其与存储的可用设备信息(如序列号、校准和设备设置)结合使用。运营团队汇编信息以便能够配置数据采集系统。数据库中的配置数据还用于将测量数据转换为工程单位。结果及其管理数据将存储回数据库,供最终用户使用。
AFTF 概念描述了飞行测试设施进一步发展所基于的框架。图 3 中所示的概念由四个主要部分组成: � 数据管理系统; � 地面数据处理系统; � 机载测量系统; � 独立测量系统。数据管理系统 (DMS) 将有关仪器配置的多学科信息存储在数据库中。飞行测试项目经理定义测量通道设计所依据的参数要求。设计人员将其与存储的有关可用设备的信息(如序列号、校准和设备设置)一起使用。运营团队汇编信息以便能够配置数据采集系统。数据库中的配置数据还用于将测量数据转换为工程单位。结果及其管理数据将存储回数据库,供最终用户使用。
AFTF 概念描述了飞行测试设施进一步发展所基于的框架。图 3 中所示的概念由四个主要部分组成: � 数据管理系统; � 地面数据处理系统; � 机载测量系统; � 独立测量系统。数据管理系统 (DMS) 将有关仪器配置的多学科信息存储到数据库中。飞行测试项目经理定义测量通道设计所依据的参数要求。设计人员将其与存储的有关可用设备的信息(如序列号、校准和设备设置)一起使用。运营团队汇编信息以便能够配置数据采集系统。数据库中的配置数据还用于将测量数据转换为工程单位。结果及其管理数据将存储回数据库,供最终用户使用。
目录 章节/页 第 1 章 – 飞行数据监控 1.简介 1/1 第 2 章 – 运营商 FDM 系统的目标 1.确定运营风险领域并量化当前安全裕度 2/1 2.确定和量化不断变化的运营风险 2/1 3.使用 FDM 信息了解发生频率 2/1 4.风险缓解技术 2/1 5.补救措施的有效性 2/2 第 3 章 – 典型 FDM 系统的描述 1.系统概述 - 信息流 3/1 2.飞机运营 - 数据采集 3/2 3.地面数据回放和分析程序 3/3 4.信息类型 3/3 5.信息数据库 3/4 6.运营商部门 - 评估和跟进 3/4 7.补救措施 3/5 8.持续监控 3/5 第 4 章 – 安全管理系统中的 FDM 1.安全管理系统 (SMS) 4/1 2.安全文化 4/2 3.风险识别 4/3 第 5 章 – FDM 的规划和引入 1.FDM 指导原则检查表 5/1
为了确保地球观测衍生产品的可信度,评估分类结果(即土地覆盖图)的准确性应被视为地理空间地图制作中的强制性步骤。在这方面,最合适且毫无疑问的方法是使用收集的地面真实数据来验证地图结果,这些数据被认为是正确的 1 ,并且需要完全独立于用于地图制作的数据集。此外,这些地面数据应尽可能在图像配准的同一时期收集,从中可以得出土地覆盖使用图。第 1.4 节将进一步讨论这种“时间一致性”。地图准确性的定量测量是地图上的类别与现场观察到的独立地面真实数据之间的一致性或对应性水平。地面真实数据可以通过不同的方式收集,例如地面调查或使用 VHR 图像解释,我们称之为“伪真实”数据。然而,需要考虑到从图像解释获得的数据可能包含错误,地面调查总是比遥感更可取。
摘要 我们回顾了光学原子钟和频率传输的实验进展,并考虑了将这些技术用于大地测量的前景。今天,光学原子频率标准已经达到了 10 − 17 以下的相对频率误差,开辟了基础研究和应用研究的新领域。原子频率对引力势的依赖性使原子钟成为寻找爱因斯坦广义相对论预测偏差、测试现代统一理论和开发新型重力场传感器的理想候选者。在本综述中,我们介绍了光学原子钟的概念,并介绍了国际时钟开发和比较的现状。除了进一步提高当今最佳时钟的稳定性和准确性之外,我们还投入了大量精力来提高紧凑、便携设备的可靠性和技术准备度,以适应专业实验室以外的应用。相对频率不确定度为 10 − 18 ,预计光学频率标准的比较将与卫星和地面数据一起,以厘米级分辨率精确确定大地测量学中的基本高度参考系统。原子标准的长期稳定性将为大地测量以及对地球的建模和理解提供出色的长期高度参考。