• SAB 维持对伽利略服务(包括太空信号)的授权,以及对伽利略整体基础设施及其演进的授权(系统构建 1.7); • SAB 授权高精度服务(HAS)初始服务声明; • SAB 定义了 PRS 初始运行能力(PRS IOC)认证的具体条件,为该计划提供最大的预期和灵活性,定义如何检查安全措施的实施情况,特别是通过审计,并定义所需的证据,以确保安全保障能够维持到全面运行能力(FOC)。 SAB 成员国决定在 PRS IOC 之前,对 2 个成员国已开发或正在开发的 PRS 运行接收器进行测试,并与所有 SAB 成员和 PRS 主管部门分享结果; • SAB 就伽利略第二代(G2G)的设计向该计划提供了建议,以促进 FOC 认证决策的维护,从而促进未来的 FOC 认证决策; • SAB 授权 L11 卫星投入使用,上传导航信号生成单元和航空电子软件的更新。SAB 编队飞行钥匙 (F-FK) 执行了 Launch 12 活动中的安全保障活动; • SAB 维护了地面段站点的认证,授权了 Galileo VAL 系统的临时运行批准 (IATO),并对 GCC 和 GSMC 进行了网络配置审计; • 截至 2022 年底,169 个欧盟机构拥有有效的 SAB 授权,可在 3 个不同类别中开发或制造 PRS 技术。自 12 月 31 日起,已采用新的 PRS 机构授权流程。
自 2023 年起 ISAE - S UPAÉRO(法国图卢兹高等航空航天学院)。先进空间概念自主决策副教授。关键词:立方体卫星、并行设计工程、初步设计、自动规划、多智能体系统、自主决策。2017 2022 年 ISAE - S UPAÉRO(法国图卢兹高等航空航天学院)。空间系统工程师。关键词:软件、教育、地面段、纳米卫星初步设计、NIMPH 立方体卫星、FEDER-SUDOE 纳米星项目。 2013-2017 ISAE - S UPAÉRO(法国图卢兹高等航空航天学院)。人为因素和神经工效学团队博士后职位。主题:人类操作员与自动驾驶汽车团队之间的交互。关键词:神经工效学、自适应交互、多智能体系统、自动驾驶汽车、人机界面、脑机接口、fNIRS、眼动追踪、心电图。 2009-2012 ONERA/DCSD,法国图卢兹。人工智能博士。主题:在动态环境中、在通信不确定的情况下对自主和异构汽车团队进行任务监督。关键词:规划、重新规划、计划修复、嵌入式架构、多智能体系统、自主决策、团队合作。 主任:Magali Barbier 和 Charles Lesire。角色:行动项目中合作经理的构想。2009-2012 ISAE-S UPAERO,法国图卢兹。面向对象编程助教,40 小时/年。2009 年(6 个月)
29.高增益 X 波段 SCP.................................................................................................................60 30. X 波段 SCP.................................................................................................................61 31. 样条喇叭天线.................................................................................................................62 32. 波纹喇叭天线.................................................................................................................63 33. C 波段 SAT 馈电网络....................................................................................................64 34. Ku 波段 SAT 滤波器....................................................................................................65 35. X 波段 SAT DRA.............................................................................................................66 36. X 波段 SAT - AM 设计................................................................................................67 37. X 波段 SAT 系统.............................................................................................................68 38. Ku 波段 SAT 系统.............................................................................................................69 39. K/Ka 波段 SAT 系统.............................................................................................................70 40. Q 波段 SAT系统................................................................................................................71 41. QV 波段 SAT 系统..............................................................................................................72 42. E 波段 SAT 系统..............................................................................................................73 地面段系统......................................................................................................................74 43. C 波段系统......................................................................................................................75 44. X 波段系统......................................................................................................................76 45. K/Ka 波段馈电网络.............................................................................................................77 46. X/K/Ka 波段系统.............................................................................................................78 47. DBS / Ka (+跟踪) 系统.............................................................................................................79 发射器天线.............................................................................................................................80 48. 平面和共形天线.............................................................................................................81 定制开发.............................................................................................................................82 雷达技术.............................................................................................................................84 uRAD - 通用雷达 - Anteral 公司出品.............................................................................................85 开源 24 GHz uRAD........................................................................................................86 uRAD 60 GHz 工业级.........................................................................................................................87 uRAD 77 GHz 汽车级.....................................................................................................................88 uRAD 智能交通解决方案.........................................................................................................................89 uRAD 液位传感.........................................................................................................................92 uRAD 智能雷达传感器.........................................................................................................................93
摘要 本文介绍了用于 FACSAT-2 (SAT-CHIRIBIQUETE) 太空任务的立方体卫星的关键设计,该卫星用于对哥伦比亚领土进行地理参考观测和分析,以保护环境。该卫星通过两个有效载荷提供电光多光谱图像(分辨率在 4.75 m 和 5 m 之间)数据,同时使用 1000-1700 nm 短波红外光谱范围内的光谱仪提供数据,用于监测温室气体。根据高级技术要求和操作概念,进行了空间、地面和发射段架构的输入识别和定义,定义了一个六单元卫星、一个位于卡利市的带有 S/X 波段天线的地面段,以及使用具有发射器相关特性的 EXOpod。根据欧洲航天局的 ECSS 标准,详细定义和表征了机械结构、电力系统、数据和命令处理系统、机载通信系统和姿态控制和确定系统的子系统。初始设计方案是根据空间、操作和技术要求以及可用于太空任务的财务预算定制的。值得注意的是,本文包含哥伦比亚的独家贡献,包括 S/X 波段天线的定义、加密软件以及物理接口板的设计和实施,以实现卫星总线和 Argus 2000 光谱仪之间的电子兼容性。关键词:FACSAT-2;立方体卫星;关键设计;航天器子系统;空间架构;MultiScape;Argus;地球观测;空间发展;哥伦比亚在太空。
背景 3 美国宇航局主要项目组合的成本和进度表现预计将恶化,月球计划面临挑战 10 美国宇航局在展示技术成熟度和设计稳定性方面总体上保持了项目组合的进展 20 美国宇航局正在采取行动,以识别和应对导致收购风险的挑战 27 项目评估 33 制定阶段项目的评估 36 蜻蜓 37 星际测绘和加速探测器 (IMAP) 39 动力和推进元件 (PPE) 41 Restore-L 43 宇宙历史、再电离时代和冰期探测器 (SPHEREx) 的光谱光度计 45 广角红外巡天望远镜 (WFIRST) 47 实施阶段项目的评估 49 商业载人航天计划 (CCP) 51 双小行星重定向测试 (DART) 53 木卫二快船 55 地面探测系统 (EGS) 57 詹姆斯·韦伯太空望远镜 (JWST) 59 Landsat 9 61 激光通信中继演示 (LCRD) 63 低空飞行演示器 (LBFD) 65 露西 67 火星 2020 69 美国国家航空航天局 (NASA) ISRO – 合成孔径雷达 (ISRO) 71 猎户座多用途载人飞船 (Orion) 73 浮游生物、气溶胶、云、海洋生态系统 (PACE) 75 灵神 77 太阳能电力推进 (SEP) 79 太空发射系统 (SLS) 81 太空网络地面段支持 (SGSS) 83 地表水和海洋地形 (SWOT) 85 机构评论 87
空间应用中心 (SAC) 是印度空间研究组织的主要研发中心之一,致力于实现该组织的愿景,即“利用空间技术促进国家发展,同时开展空间科学研究和行星探索”。在其辉煌的 50 年历程中,SAC 已证明其在开发空间和机载仪器/有效载荷方面的核心竞争力,这些仪器/有效载荷涵盖遥感和卫星通信、气象学、导航和行星探索。近年来,SAC 一直是印度空间研究组织的牵头中心,为总理科学、技术和创新咨询委员会 (PM-STIAC) 的“量子前沿任务”和该国首个载人航天计划“Gaganyaan”做出贡献。“SAC 2023 的研究领域:赞助研究主题汇编”是该系列的第九份文件,旨在概述中心目前正在进行的研究状态。它重点介绍了一些最有前途的先进和未来研发和创新领域,这些领域涉及空间应用和技术,以满足国家发展和社会福利的应用。我相信来自不同技术领域的科学家/工程师带来的广泛研究课题将激发学术界为空间应用、技术、有效载荷系统、地面段技术、数据处理等各个令人兴奋的方面做出贡献。使用最先进的工具和技术。我相信,我们的研究管理团队精心编写的这份文件将实现其目的,即通过 ISRO 赞助研究的各种途径从印度学术界征集研究提案,即:STC、RAC-S、S-TIC 等。导致在 SAC 研发和运营活动中使用有形成果。文件中还提供了程序和必要的指南。研发范围不受本文件页数的限制,鼓励学术界提出相关领域的研究,以加强印度太空计划。我热忱邀请全国学术机构的智慧和专业知识挺身而出,热情参与 SAC 的座右铭,即利用空间技术实现“Atmanirbhar Bharat”。
为即将到来的太空任务提供导航和通信服务的卫星星座 Telespazio 是莱昂纳多 (67%) 和泰雷兹 (33%) 的合资企业,今天在米兰与欧洲空间局 (ESA) 签署了一份价值 1.23 亿欧元的合同,用于实施月光计划的第一阶段。Telespazio 将牵头一个欧洲公司联盟,负责监督卫星星座的研发,为未来的月球任务提供导航和通信服务。该联盟包括 Telespazio(负责整个系统的总承包商)以及包括 Hispasat、Viasat、Thales Alenia Space Italia、SSTL、Qascom、MDA、KSat、Telespazio UK、Telespazio Iberica、SDA Bocconi、PLIMI、CRAS 和 SI 在内的多家公司,负责该系统的设计、实施和运行认证。月光基础设施位于地月轨道,将利用欧洲导航和通信行业开发的先进技术,经过优化,即使在月球上也能提供可靠的连接和精确的定位。这些服务对于确保安全探索月球表面、从地球持续监测活动和改善任务的运行管理至关重要。月光计划旨在为欧洲航天局和其他空间机构的机构任务以及商业用户提供通信和导航服务,从而为建立稳固的月球经济做出贡献。此外,与最重要的国际空间机构共享的标准 LunaNet 的互操作性将确保各服务提供商之间的合作,提高整个系统的可靠性。月光基础设施将分为三个主要部分:月球空间段,包括提供通信、导航和时间同步服务的月球轨道卫星;月球地面段包括提供服务和管理运营活动所需的控制站和地面基础设施,月球用户段包括星座进入轨道后验证服务所需的终端。由于该系统基于 NASA、ESA 和 JAXA 定义的国际标准,它将根据标准支持月球导航和通信终端。初始配置包括一颗通信卫星和四颗导航卫星,旨在确保广泛覆盖月球南极,这是未来探索月球的关键区域
eSTACä〜ao多用途natal(natal Multi-Mission Station)(EMMN)是由属于遗产卫星跟踪系统的更新过程,该过程属于属于tuto nacional de pessquisas Espaciais(国立空间研究所)(INPE)(INPE)。作为地面站,目的是在操作员与各自的轨道卫星之间提供安全的通信联系。为此,地面段authatialation用卫星和操作员之间的经纪人充当经纪人,使用虚拟专用网络(VPN)(vpn)和可重新配置的射频频率(RF)通道,以非常高的频率(VHF),Ultra高频(UHF)和S频带为后者提供加密的数据链路。EMMN的操作架构在以太网网络中使用基于分布式系统的开源软件以及SOLITYS,从而可以更好地扩展功能复合物的每个组件的可扩展性和维护。通过自动系统“触发”服务的服务,用于调度卫星通行证,其优先级是预定义的,使用消息排队遥测传输(MQTT)协议启动了分布式服务的编排。在这一点上,在精心策划的过程中进行了三个主要操作,一个与无线电相关,另一个与跟踪系统有关,而第三个与操作中涉及的地面细分之间的通信相关。激活的第一个任务是由软件定义的Radio(SDR)和微控制的一组交换机之间的协作组成的,以将所需的天线连接到信号放大器。这允许使用UHF,VHF和/或S频段的通道配置,并进一步配置SDR中的信号处理以根据目标卫星调节/解调信号。另一个任务是由机电组形成的天线跟踪系统,该系统也已更新为微控制方案。它通过转移要跟踪的卫星的两行元素(TLE)而生成的ephemeris表执行跟踪,并自动从Internet获得。最后一个任务是远程通信系统,它使外部卫星操作员能够通过传输控制协议(TCP)和VPN访问站点,从而提供了访问遥测,跟踪和命令(TT&C)服务的访问权限,并提供了使任务指定的地面与地面与地面与地面通信通信协议的完全合规性。本文将介绍使用EMMN涉及其多误差操作的经验的报告,并从跟踪某些卫星的数据中得出了数据。
近来,太空网络安全受到广泛关注,从政策智库[1,29]到商业会议[2]等各类论坛都在讨论这一问题。在最近发生广为人知的 ViaSat 网络攻击[3]之后,公众对太空网络安全挑战的认识有所提高。此外,近年来,太空网络安全利益共同体急剧扩大,DEFCON 大会上航空航天村[4]的普及以及空间信息共享与分析中心 (ISAC) [5]的迅速崛起就是明证。在美国以外,随着 CYSAT 等重大活动的举办以及参与太空网络安全挑战的新兴商业生态系统[6],人们对太空网络安全的兴趣也日益浓厚。鉴于商业太空公司面临越来越大的压力,需要承认和应对网络威胁,人们对太空网络安全的兴趣和紧迫性并不令人意外。不仅威胁形势随着新的地缘政治紧张局势和行为者而演变,而且由于“新太空”系统的数字化性质,故障模式和攻击面也显著增加。目前流行的模块化太空系统作为商用现货产品出售,特别容易受到攻击,迄今为止已证实存在多起此类攻击[7]。太空系统的数字化带来了新的机器人技术和概率自主性,这为任务网络安全带来了另一层挑战,例如有保证的和值得信赖的自主性[8]。与其他关键基础设施技术类似,太空系统的数字化转型也增加了它们遭受网络攻击的脆弱性。太空系统的性质在不断演变,其任务背景也在不断演变。以前被认为负担不起且技术上不切实际的太空任务已不再是科幻小说中的事情。太空服务、组装和制造就是这样一种任务,预计在未来十年将变得司空见惯,具有独特的网络风险状况[9]。发射服务提供商多元化,从财务角度来看也被认为是不切实际的,但这种多元化不仅可行,而且是一个蓬勃发展的市场。在私人资本投资的推动下,初创公司满怀热情地进入该领域。任务的多样性、支持任务的组织以及底层技术堆栈的进步代表着该领域的转折点。鉴于当前的市场和威胁形势,需要采取战略性和系统性的努力,以严格的技术方式应对新的任务网络安全挑战。当前的进展速度要求我们努力妥善记录和讨论技术网络安全需求,以保持该领域的稳健性。本文呼吁太空系统界采取行动,组建一个技术标准委员会,为商用现货 (COTS) 模块化太空系统技术定义网络安全技术要求,涵盖地面段、空间段、用户段、链路段和整个系统的集成层。这样的标准将有助于解决当今商业太空界存在的巨大网络安全漏洞。
(特别是 SCI、AVT、SET)都有技术团队管理与太空相关的研究工作。因此,在北约 STO 背景下,这种跨 STC 活动受到鼓励和优先考虑。随着太空部队的建立,特别是在美国,该主题引起了进一步的关注,以加强太空能力和服务的发展。小型卫星星座的最新成功和可负担得起的太空访问数量的增加进一步增加了从协作太空资产中获得的需求和价值。自 2000 年代初以来,AVT STC 一直致力于小型卫星 (Smallsat) 平台的进步。已经进行了一系列连续的 ET、RWS 和 RSM,最后一个是关于为北约任务提供弹性小型卫星星座的支持平台技术的 AVT-336。混合空间架构 (HSA) 主题是 2021 年举行的 AVT-336 RSM 讨论中出现的最重要主题之一,AVT-ET-233 技术团队确认了该主题的重要性。此外,当前北约 ACT 对网络和空间的愿景也强烈支持北约任务对 HSA 的需求。技术团队将举行研究专家会议 (RSM),以评估实施北约任务混合空间架构的平台影响。HSA 是新兴小型卫星能力与传统政府大型空间系统的集成。HSA 使用所有可用的数据链路(包括激光、射频、军事战术数据链路和地面段有线网络)连接多个卫星资产和卫星星座以及地面通信系统。HSA 将提供弹性系统架构,该架构使用各种网络在北约成员国政府和商业运营的大型和小型卫星系统之间进行快速和安全的数据交换;在各种、多样化和分层的轨道上。该架构从以平台为中心转变为以信息为中心的模式。预计 HSA 将大幅提高太空系统的威慑力和弹性,同时提供有利于北约任务的新信息。HSA 将在数量和可用太空资产多样性方面提供优势,减轻当前架构中少数高价值资产固有的脆弱性。这种系统可以更快地收集和传播重要信息给作战人员,以及快速插入新技术。此外,HSA 还将提高国家军事资产、民用能力和商业太空系统之间的分散互操作性。该 RSM 将为参与国提供机会,通过审查最新技术、确定技术差距、讨论技术挑战的潜在解决方案来分享、评估和改进 HSA。知识转移将支持未来研究、技术开发的方向,并减少重复劳动,如果有的话。