1 “核设施”一词包括:核电站;研究反应堆(包括次临界和临界组件)及任何相邻的放射性同位素生产设施;乏燃料储存设施;铀浓缩设施;核燃料制造设施;转化设施;乏燃料再处理设施;核燃料循环设施产生的放射性废物预处置管理设施;以及核燃料循环相关研究和开发设施。 2 外部事件是指源自场址之外的事件,运营组织对其发生的控制非常有限或完全没有控制,应考虑其对核设施的影响。此类事件可能是自然或人为引起的,在场址评估过程中,出于设计目的对其进行识别和选择。源自场址但在重要安全建筑物之外的事件应与场外外部事件相同处理,但要考虑对这些事件的更高控制水平(这包括场址上的任何耦合设施,例如生产氢气的设施)。本出版物对“外部事件”一词的定义进行了略微修改。 3 国际原子能机构,《核电站场址评价中的外部人为事件》,国际原子能机构安全标准系列第 NS-G-3.1 号,国际原子能机构,维也纳(2002 年)。
不太适合开发。根据从利益相关方收到的意见,OSSC 团队确定了有利的场址特征:风能或太阳能资源潜力高;可接入现有输电基础设施;与生物多样性、农业生产、文化资源和历史价值或娱乐和风景价值的冲突低;与军事行动的冲突低;与部落主权兼容。以前被扰乱或贫瘠的土地往往具备许多这些场址特征。OSSC 汇编了其他州和地区的选址指南,这些指南针对每个特征,可作为俄勒冈州的范例,同时还汇编了俄勒冈州可用的数据和地图资源,这些数据和地图资源可能有助于在规划过程的早期确定合适的场址。
不太适合开发。根据从利益相关方收到的意见,OSSC 团队确定了有利的场址特征:风能或太阳能资源潜力高;可接入现有输电基础设施;与生物多样性、农业生产、文化资源和历史价值或娱乐和风景价值的冲突低;与军事行动的冲突低;与部落主权兼容。以前被扰乱或贫瘠的土地往往具备许多这些场址特征。OSSC 汇编了其他州和地区的选址指南,这些指南针对每个特征,可作为俄勒冈州的范例,同时还汇编了俄勒冈州可用的数据和地图资源,这些数据和地图资源可能有助于在规划过程的早期确定合适的场址。
最近的研究预测,未来海上风电的平准化能源成本 (LCOE) 将大幅下降,这在很大程度上归因于技术创新带来的预期成本降低。本研究评估了技术导致的一系列资本、运营和财务成本类别的下降所导致的 LCOE 的空间变化。固定底部和浮动海上风力发电厂的空间成本模型用于模拟对数千个潜在美国场址的影响。由于所考虑场址的地理空间特征不同,并且这些输入参数具有非线性的交互依赖性,单个涡轮机子系统成本的特定变化会产生一系列 LCOE 结果;例如,净容量系数提高 10.8% 可使不同场址的 LCOE 降低 6% 至 20%。这项研究扩展了现有的海上风电文献,这些文献通常评估单个场址的成本敏感性,而不考虑 LCOE 的空间差异。结果表明,技术创新的影响可能相当大,在优先考虑技术创新研究或资助决策以推进美国海上风电技术时,应从空间和时间角度进行考虑。
爱达荷国家实验室 (INL) 场址自 1949 年开始运营,是美国能源部 (DOE) 的保留地,位于爱达荷州东南部沙漠,距离爱达荷福尔斯以西约 25 英里(图 ES-1)。INL 场址面积为 890 平方英里(569,135 英亩),约为罗德岛面积的 85%。它于 1949 年作为国家反应堆测试站建立,多年来一直是世界上最大的核反应堆集中地。建造了 52 座核反应堆,包括实验增殖反应堆-I,它在 1951 年生产了第一批可用核能发电量。研究人员在 INL 场址率先开发了世界上许多首批核反应堆原型和先进的安全系统。在 20 世纪 70 年代,实验室的使命扩大到
预计可开发的潜在存储容量为 585-1,392 GWh/周期/天,远高于 510 GWh/周期/天[3],这一水平需要在 2050 年之前得到确保。发电成本估计为 18.5-20.5 日元/千瓦时。 潜在场址广泛分布于全国各地。有必要调查每个地区抽水蓄能电站的场址适宜性以及电站与可再生能源的最佳组合。应根据调查结果制定开发计划。 水坝越小,就越容易确定上游水库的场址,也意味着建设起来更容易、成本更低。在开发过程中,最好从较小的水坝开始。 多用途水坝中储存的水可用于各种用途。因此,重要的是确保抽水蓄能电站的用水不会破坏水坝的用水和防洪功能。
99 Tc 是核能发电过程中产生的一种主要长寿命裂变产物。多年来,Tc 一直因废物储存设施的泄漏而无意中进入环境。99 Tc 目前是萨凡纳河场址 (SRS) 和其他能源部环境管理场址(最著名的是汉福德场址、帕迪尤卡气体扩散厂和橡树岭国家实验室)的主要风险驱动因素之一。液态核废料和环境中 Tc 最常见的化学形式是阴离子高锝酸盐 (TcO 4 -)。TcO 4 - 在常见沉积矿物上的吸附有限,并且流动性很强,很难捕获或固定 [1]。随着含 99 Tc 的核废料库存持续快速增加,需要新型封存技术来减少其对环境和生物的潜在污染。
1.1 简介 1.2 总体工厂描述 1.2.1 主要设计标准 1.2.1.1 一般标准 1.2.1.2 发电设计标准 1.2.1.2.1 安全设计标准 1.2.1.3 系统方法 1.2.1.3.1 核系统标准 1.2.1.3.2 电力转换系统标准 1.2.1.3.3 电力系统设计标准 1.2.1.3.4 放射性废物系统设计标准 1.2.1.3.5 辅助系统设计标准 1.2.1.3.6 屏蔽和访问控制设计标准 1.2.1.3.7 核安全系统和工程保障设计标准 1.2.1.3.8 过程控制系统设计标准 1.2.2 场地描述1.2.2.1 场址特征:场址位置和规模 1.2.2.2 进入场址 1.2.2.3 场址及周边环境描述 1.2.3 结构和设备 1.2.4 核蒸汽供应系统 1.2.4.1 反应堆堆芯和控制棒 1.2.4.2 反应堆容器和内部构件 1.2.4.3 反应堆再循环系统 1.2.4.4 余热排出系统 1.2.4.5 反应堆水净化系统 1.2.4.6 核泄漏探测系统 1.2.5 电气、仪表和控制系统 1.2.5.1 电力系统 1.2.5.2 核系统过程控制和仪表 1.2.5.3 电力转换系统过程控制和仪表 1.2.6 放射性废物系统 1.2.7 燃料处理和贮存系统 1.2.7.1 新燃料贮存 1.2.7.2乏燃料贮存 1.2.7.3 燃料处理系统 1.2.7.4 乏燃料池冷却和清理系统 1.2.8 电力转换系统 1.2.8.1 T
Silex Systems Limited(Silex,该公司)(ASX:SLX;OTCQX:SILXY)欣然告知,第三代激光 SILEX 铀浓缩技术的独家授权商 Global Laser Enrichment LLC(GLE)已收购了位于肯塔基州的一块 665 英亩的土地,用于计划中的帕迪尤卡激光浓缩设施 (PLEF)。该地块之前归肯塔基州所有,由肯塔基州鱼类和野生动物资源部 (KDFWR) 管理,GLE 通过肯塔基州、KDFWR 和帕迪尤卡-麦克拉肯县工业发展局之间的协议收购了该地块。GLE 之前签订了一系列协议,这些协议提供了在 2024 年 6 月购买该地块的选择权(有关更多详细信息,请参阅 Silex 于 2024 年 6 月 4 日发布的公告)。该场址位于战略位置,毗邻美国能源部 (DOE) 前第一代帕迪尤卡气体扩散工厂 (PGDP),该工厂在运营数十年后于 2013 年关闭,在 PGDP 设施中留下了数十万吨的废弃 UF 6 尾料库存。GLE 获得的场址可通往储存尾料库存的气瓶堆场,从而最大限度地减少了 PGDP 和 GLE 拟建 PLEF 场址之间的运输。GLE 已对该场址进行了数月评估,并进行了岩土工程分析,以支持其正在等待的许可证申请和向核管理委员会 (NRC) 提交的环境报告。GLE 目前有望在 2024 年 12 月提交环境报告,并在 2025 年中期提交许可证申请。 Silex 首席执行官兼董事总经理 Michael Goldsworthy 表示:“收购 PLEF 场址是 GLE 团队多年努力的结果,同时也得到了帕迪尤卡社区和肯塔基州的大力支持。GLE 场址毗邻 PGDP,这是 GLE 与 DOE 于 2016 年达成的协议的重要成果,根据该协议,GLE 将收购超过 20 万公吨的贫化尾矿库存,为 GLE 的 PLEF 项目机会提供支持。GLE 计划利用这种材料作为原料,使用 SILEX 激光浓缩技术生产天然级六氟化铀 (UF 6),生产时间长达 30 年。预期生产率将相当于年产铀量高达 500 万磅的铀矿,按产量计算,将跻身当今铀矿产量前 10 名。”