从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
摘要 量子点 (QD) 中自旋量子比特的电控制依赖于自旋轨道耦合 (SOC),它既可以是底层晶格或异质结构的固有特性,也可以是外部特性,例如通过微磁体。在实验中,微磁体已被用作合成 SOC,以使量子点中的自旋量子比特与电场强耦合。在这里,我们从理论上研究了由于合成 SOC 诱导的自旋轨道混合而导致的 QD 中电子的自旋弛豫、纯失相、自旋操纵和自旋光子耦合。我们发现,与固有 SOC 的情况相比,合成 SOC 存在时自旋动力学存在质的差异。具体而言,由于合成 SOC 和形变势声子发射(或约翰逊噪声)引起的自旋弛豫表现出对磁场的 B 5 0(或 B 0 )依赖性,这与本征 SOC 的 B 7 0(或 B 3 0 )依赖性形成对比。此外,电荷噪声会导致合成 SOC 发生快速自旋失相至一阶,这与本征 SOC 可忽略的自旋纯失相形成鲜明对比。这些定性差异归因于合成 SOC 的时间反转对称性(T 对称性)破缺。具有破缺 T 对称性的 SOC(例如来自微磁体的合成 SOC)消除了“范弗莱克抵消”并导致有限的纵向自旋-电耦合,从而允许自旋和电场之间的纵向耦合,进而允许自旋纯失相。最后,通过适当选择磁场方向,可以改善通过合成 SOC 实现的电偶极子自旋共振,并在基于自旋的量子计算中具有潜在的应用。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
在血氧水平依赖性 (BOLD) 对比度的功能性磁共振成像 (fMRI) 中,梯度回忆回波 (GRE) 采集具有高灵敏度,但会遭受磁化引起的信号丢失,并且缺乏对微血管的特异性。相反,自旋回波 (SE) 采集以降低灵敏度为代价提供了更高的特异性。本研究引入了非对称自旋回波多回波平面成像 (ASEME-EPI),该技术旨在结合 GRE 和 SE 的优点,用于高场临床前 fMRI。ASEME-EPI 采用自旋回波读数,然后是两个非对称自旋回波 (ASE) GRE 读数,提供初始 T2 加权 SE 图像和后续 T2 ∗ 加权 ASE 图像。在 9.4 T 临床前 MRI 系统上实施了该技术的可行性研究,并使用北方树鼩的视觉刺激进行了测试。将 ASEME-EPI 与传统 GRE 回波平面成像 (GRE-EPI) 和 SE 回波平面成像 (SE-EPI) 采集进行比较,结果表明,ASEME-EPI 实现了与 GRE-EPI 相当的 BOLD 对比噪声比 (CNR),同时在激活图中提供了更高的特异性。ASEME-EPI 激活更多地局限于初级视觉皮层 (V1),而 GRE-EPI 则显示激活超出了解剖边界。此外,ASEME-EPI 还展示了在 GRE-EPI 遭受信号丢失的严重场不均匀区域中恢复信号的能力。ASEME-EPI 的性能归因于其多回波特性,允许 SNR 优化的回波组合,从而有效地对数据进行去噪。初始 SE 的加入也有助于在易受敏感伪影影响的区域恢复信号。这项可行性研究证明了 ASEME-EPI 在高场临床前 fMRI 中的潜力,在解决高场强下 T2 ∗ 衰减的挑战的同时,在 GRE 敏感性和 SE 特异性之间提供了一种有希望的折衷方案。
毫米级无电池硬膜外皮质刺激器 Joshua E. Woods 1,& , Amanda L. Singer 1,2,& , Fatima Alrashdan 1 , Wendy Tan 1 , Chunfeng Tan 3 , Sunil A. Sheth 3 , Sameer A. Sheth 4 , Jacob T. Robinson 1,2,5,6,7 * 1 莱斯大学电气与计算机工程系,6100 Main St, Houston, TX, 77005 2 Motif Neurotech,702 Marshall St, Houston, TX, 77006 3 UTHealth McGovern 医学院神经内科,6431 Fannin St, Houston, TX, 77030 4 贝勒医学院神经外科系,1 Baylor Plaza, Houston, TX, 77030 5 莱斯大学生物工程系, 6100 Main St,休斯顿,德克萨斯州,77005 6 莱斯大学应用物理学项目,6100 Main St,休斯顿,德克萨斯州,77005 7 贝勒医学院神经科学系,1 Baylor Plaza,休斯顿,德克萨斯州,77030 & 这些作者贡献相同 * 通讯作者,jtrobinson@rice.edu 摘要 难治性神经和精神疾病越来越多地使用植入式神经调节装置进行脑刺激疗法治疗。然而,目前市售的刺激系统受到对植入式脉冲发生器和有线电源的需求的限制;这种架构的复杂性会产生多个故障点,包括导线断裂、移位和感染。实现微创方法可以增加获得这些疗法的机会。在这里,我们展示了第一个毫米大小的无导线脑刺激器,用于大型动物和人类受试者。这种数字化可编程的超脑治疗装置 (DOT) 宽度约为 1 厘米,但可以通过硬脑膜产生足够的能量来按需刺激皮质活动。这种极端的小型化是使用最近开发的磁电无线电力传输实现的,它使我们能够达到刺激大脑表面所需的功率水平,而无需直接接触皮质表面。这种外部供电的皮质刺激 (XCS) 开启了简单的微创外科手术的可能性,可以通过永不接触大脑表面的微型植入物实现精确、持久和在家的神经调节。当药物无效、效果不佳或产生无法忍受的副作用时,患者和临床医生越来越多地转向神经调节来寻求有效的治疗方法。对于帕金森病 (PD) 和特发性震颤 (ET),深部脑刺激是治疗震颤 1 和其他症状 2 的标准治疗方法。对于重度抑郁症 (MDD) 和强迫症 (OCD) 等精神健康问题,越来越多的共识认为,当药物无法提供充分治疗时,通过神经生理学调节特定大脑区域的活动可以提供一种有效的治疗方法 3 。经颅磁刺激 (TMS) 就是应用这种刺激的一种方法。TMS 可以使用 1-2 特斯拉的外部磁场 4 ,非侵入性地激活大脑表面几毫米到几厘米大小的小区域,并且已经在大量临床研究中成功用于治疗神经精神疾病。自 1998 年以来,使用 TMS 治疗神经精神疾病的临床试验数量呈指数级增长,翻倍时间约为 2.5 年 5 。根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司都会报销多次临床治疗的费用 6 。还有有希望的数据表明,TMS 可用于治疗强迫症 7 、创伤后应激障碍 8 和阿尔茨海默病 9 。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅获准在诊所使用。因此,对于住得离 TMS 设施较远或无法从工作或其他生活中抽出时间接受日常 TMS 治疗的患者,无法使用 TMS。其次,每次治疗定位可能不精确,因为每次患者在诊所时都必须对准刺激器。虽然还有其他非侵入性脑刺激形式,如经颅直流刺激 (tDCS) 和经颅交流刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的接受度。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线会因频繁移动而发生导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于根据这些临床试验的数据,FDA 已批准使用 TMS 治疗难治性抑郁症,并且如果患者对传统抗抑郁疗法无效,大多数保险公司会报销多次诊所治疗的费用 6。还有有希望的数据表明,TMS 可用于治疗强迫症 7、PTSD 8 和阿尔茨海默病 9。虽然 TMS 是一种经过临床验证的疗法,但这种疗法有两个主要局限性。首先,TMS 系统目前需要大约 3 MW 10 的大峰值功率,这意味着它们目前仅被批准用于诊所。因此,对于那些住得离 TMS 设施很远或无法抽出时间离开工作或其他生活活动来参加日常 TMS 治疗的患者来说,TMS 是无法使用的。其次,由于患者每次在诊所时都必须对准刺激器,因此每次治疗的定位可能不精确。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,而头皮神经会产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性会限制患者的采用。传统上,慢性刺激器的植入包括由电池供电的植入式脉冲发生器 (IPG),通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,据报道,4% 至 15% 的植入导线因频繁移动而导致导线移位和断裂 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的装置已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于每次治疗定位可能不精确,因为患者每次去诊所时都必须对准刺激器。虽然还有其他非侵入性形式的脑刺激,如经颅直流电刺激 (tDCS) 和经颅交流电刺激 (tACS),但没有一种家用神经刺激技术得到广泛使用,可能是因为非侵入性电刺激器产生的电场无法达到直接激活大脑区域所需的场强,而不会激活头皮中的神经,从而产生疼痛的副作用 11 。植入式刺激器可以提供精确的电刺激,持续激活大脑,但这些植入物需要复杂的外科手术,其成本和复杂性可能会限制患者的采用。慢性刺激器的植入传统上包括由电池供电的植入式脉冲发生器 (IPG),并通过电线连接到刺激部位 12–15 。当 IPG 植入胸部时,导线必须穿过头部和颈部,频繁移动会导致导线移位和断裂,据报道,植入导线中有 4% 至 15% 会发生这种情况 16,17 。或者,也可以将 IPG 植入颅骨中,这需要患者接受开颅手术 18,19 。尽管如此,这些类型的设备已成功用于
背景:非小细胞肺癌(NSCLC)是扩散到大脑的最常见肿瘤实体,多达50%的患者发展出脑转移(BMS)。在MRI上检测BMS是具有挑战性的,其固有的诊断风险固有的风险。目的:在临床常规MRI上训练和评估NSCLC中BMS的全自动检测和3D分割的深度学习模型(DLM)。研究类型:回顾性。人口:预处理MRI 315 BMS的98例NSCLC患者分为培训(66例患者,248 BMS)和独立测试(17例患者,67 BMS)和对照(15例患者,0 BMS)同伙。场强/序列:t 1-/t 2加权,T 1加权对比度增强(T 1 CE;梯度回波和自旋回波序列),以及来自各个供应商和研究中心的1.0、1.5和3.0 t的天赋。评估:使用5倍交叉验证对训练队列进行了3D卷积神经网络(DEEPMEDIC),并在独立的测试和控制集中进行了评估。通过神经外科医生和t 1 CE的放射科医生对BMS的三维体素分割,用作参考标准。统计检验:每次扫描的敏感性(回忆)和假阳性(FP)发现,骰子相似性系数(DSC)比较手动分割之间的空间重叠,Pearson的相关性(R)的相关性(R)以评估量化量级的量级测量和WIRCO之间的关系,并评估量级的量级量表,并进行了量级测量。 BMS。p值<0.05在统计学上被认为是显着的。与参考标准相比,自动化结果:在测试集中,DLM检测到67 BMS中的57个(平均体积:0.99 4.24 cm 3),导致灵敏度为85.1%,而每次扫描的FP发现为1.5。错过的BMS比检测到的BMS(0.96 2.4 cm 3)的体积明显小(0.05 0.04 cm 3)。
1. Mulert, C.、Pogarell, O. 和 Hegerl, U. 同步 EEG-fMRI:精神病学展望。CEN, 39(2),61–64 (2008)。https://doi.org/10.1177/155005940803900207 2. Shams, N.、Alain, C. 和 Strother, S. 同步 EEG–fMRI 中诱发反应的 BCG 伪影去除方法比较。J. Neurosci. Methods 245, 137–146 (2015) 3. Iannotti GR、Pittau F.、Michel CM、Vulliemoz S. 和 Grouiller F. 基于 EEG 地图拓扑在同步 EEG-fMRI 记录中进行脉冲伪影检测。脑拓扑; 28(1):21-32 (2015) 4. Allen, PJ, Polizzi, G., Krakow, K., Fish, DR 和 Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse pseudodragon and a method for its subtraction. Neuroimage 8(3), 229–239 (1998) 5. C. Bénar, Y. Aghakhani, Y. Wang 等,Quality of EEG insynchronous EEG–fMRI for epilepsy,Clin. Neurophysiol. 114 (3), 569–580 (2003) 6. K. Niazy, CF Beckmann, GD Iannetti 等, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影, Neuroimage 28 (3), 720–737 (2005) 7. Kruggel F, Wiggins CJ, Herrmann CS 等, 在 3.0 Tesla 场强下功能性 MRI 期间记录事件相关电位。Magn Reson Med, 44(2): 277-282 (2000) 8. Niazy, RK, Beckmann, CF, Iannetti, GD, Brady, JM 和 Smith, SM, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影。 Neuroimage 28(3), 720–737 (2005) 9. Li Hu, Zhiguo Zhang: EEG 信号处理和特征提取。Springer Nature (2019) 10. Ibrahim Sadek, Jit Biswas, Bessam Abdulrazak。心冲击信号处理:综述。健康
1962 年,美国在太平洋上空 250 英里处引爆了一枚百万吨级核武器。爆炸导致高层大气中电子严重失衡,并与地球磁场相互作用,在太平洋大片地区产生振荡电场。这些场的强度足以损坏一千英里外夏威夷的电子设备,并清楚地展示了电磁脉冲 (EMP) 的影响。军方不久就开始考虑如何在不使用核武器的情况下制造这种脉冲。20 世纪 60 年代末,达尔格伦海军武器实验室的特殊应用部门开始研究如何产生高功率振荡电场,这种电场可用作破坏敌方电子设备的武器。这些设备基本上是无线电早期使用的老式火花隙发射器的高功率版本。为了构造一种能够产生类似核电磁脉冲场的装置,需要将储存的电能转换为射频 (RF) 能量,然后通过天线穿过大气层辐射到目标。这些装置通常将能量储存在高压电容器中,并使用火花隙开关快速释放能量。然后,这会在天线上驱动振荡电流,使其辐射。为了达到核电磁脉冲的典型场强数千伏/米,需要工作电压为数十万伏或更高的装置。20 世纪 70 年代初,人们研究了许多辐射装置。大多数都属于一类称为赫兹振荡器的装置。电容器被充电至高电压,开关闭合,电流在电路中流动,导致储存的能量在电容器的电场和电感器的磁场之间振荡。要将电容器充电到极高的电压,必须使用某种类型的升压变压器。最常用的倍压器之一是马尔克斯发生器。内部电阻和外部辐射的损耗通常会在几个周期后衰减振荡波形。因此,辐射脉冲的时间很短,频率成分很宽。1 图 1 显示了电感电容振荡器(LC 振荡器)的简单示意图。
背景:超高场7T MRI可以提供出色的组织对比度和解剖学细节,但通常成本过高,并且在临床实践中不可广泛使用。目的:从广泛获取的3T图像中生成合成的7T图像,并评估这种方法的脑成像。研究类型:前瞻性。人口:33名健康志愿者和89例脑部疾病患者,分为训练,并以4:1的比例评估数据集。序列和场强:T1加权非增强或对比度增强的磁化准备快速采集梯度回声序列在3T和7T处。评估:开发了生成对抗网络(Syngan),以从3T图像作为输入中产生合成的7T图像。Syngan培训和评估是针对非增强和对比增强的配对采集进行的。通过5点李克特尺度评估了三位放射科医生在整体图像质量,人工制品,清晰度,对比度和可视化容器的整体图像质量,伪像,对比度和可视化船舶的定性图像质量以及合成的7T图像的定性图像质量。统计测试:Wilcoxon签名的等级测试将合成7T图像与获得的7T和3T图像以及类内相关系数进行比较,以评估观察者间的变异性。p <0.05被认为是显着的。结果:在122个配对的3T和7T MRI扫描中,有66个没有造影剂,而对比度为56。平均生成合成图像的时间为每片11.4毫秒(每个参与者2.95秒)。证据水平:2技术效率:第1阶段J. Magn。与非增强和对比度增强亚组中的3T图像相比,与3T图像相比,合成的7T图像显着改善了组织的对比度和清晰度。同时,根据非增强和对比增强子组的所有评估标准,获得的7T和合成7T图像之间没有显着差异(P≥0.180)。数据结论:深度学习模型具有与获得的7T图像相似的图像质量的合成7T图像的潜力。共振。成像2023。
在过去的几十年里,加速器被开发和优化为探索亚核粒子研究能量前沿的工具。然而,最近,加速器优化的另一个方面变得更加重要,即高度可靠的操作,以产生大量的粒子碰撞(“粒子工厂”)或光子(光源),为庞大而多样化的用户群体服务。可靠性方面对于光源尤其重要。光源拥有由数千名用户组成的庞大用户群体,这些用户组织成小型独立研究团队,每个研究团队仅使用一小部分光束时间。即使由于频繁的故障和中断导致的轻微运营效率低下也可能导致某些研究团队分配的光束时间完全损失,从而严重扰乱他们的科学计划。出于这些原因,人们越来越重视高度可靠的操作。可靠性通常定义为在预定时间段内提供给用户的光束时间的相对总量。95% 的可靠性被认为是现代光源的可容忍下限。经常报告 98% 左右的可靠性值,这并不是不寻常的成就。这意味着,对于计划的每年 5000 小时的光束时间,由于故障,用户操作可能只会损失 250 小时或更少。假设平均完全从故障中恢复需要两个小时,中断之间的时间必须平均大于 40 小时(假设每天 24 小时和每周 7 天运行)。同步辐射科学已经变得非常复杂,光束的传输不再是可靠性的充分标准。用户需要具有计划的光束能量和几乎恒定的强度、高空间稳定性和所有光束参数在操作模式改变后具有高再现性的光束,例如通过改变波荡器磁铁的场强来改变光子能量。加速器由大量有源组件组成,其中许多组件具有高功耗,必须同时运行才能使光束运行。它们通过复杂的数字控制连接和协调,精确计时通常是正常运行的条件。对于拥有 100,000 个此类组件的设施,任何组件可能仅在运行 4 × 10 6 小时后才会失效。