摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
众所周知,纠缠在量子场论中广泛存在,具体含义为:每个 Reeh-Schlieder 态都包含任意两个空间分离区域之间的纠缠。这尤其适用于闵可夫斯基时空中无相互作用的标量理论的真空。场论中关于纠缠的讨论主要集中在包含无限多个自由度的子系统上 — — 通常是在紧凑空间区域内支持的场模式。在本文中,我们研究 D + 1 维闵可夫斯基时空中的自由标量理论中由有限个场自由度组成的子系统中的纠缠。关注场的有限个模式是受真实实验有限能力的驱使。我们发现有限维子系统之间的纠缠并不常见,需要仔细选择模式的支持才能出现纠缠。我们还发现纠缠在高维中越来越稀疏。我们得出结论,闵可夫斯基时空中的纠缠并不像通常认为的那么普遍。
合作目标 量子计算机有望超越传统计算机的容量,并彻底改变计算的多个方面,尤其是量子系统的模拟。我们开发了使用量子计算机研究强相互作用粒子在碰撞中的演化、引力系统的量子行为以及时空出现的新方法,这些方面超出了传统计算的范围。我们的目标是设计与这些问题相关的通用量子计算机的构建模块,并开发与系统规模合理扩展的算法。
在未来几年中,TSOS对电网技术的需求将大大增加,以应对范围扩大电力需求的扩展以及与Renewa Ble生成的整合和联系,如Entso-E十年的网络开发计划(Tyndp)2022所述。Tyndp 2022包括141个传输项目,在38个欧洲国家中具有泛欧相关性,代表超过43,000公里的电缆和线路。此外,TSO还将需要访问必要的设备,技术和数量,以扩展,维修和升级现有的传输基础设施和系统。从这个意义上讲,对网格技术作为“战略净零技术”的认识是回答网格开发需求的制造方面的关键,因此,促进了欧洲绿色交易的一部分绿色交易工业计划的成就。
2 诊断工具箱:量子纠缠和共形场论.......................................................................................................................................................................................................................................5 2.1 量子纠缠....................................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性....................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性.................................................................................................................................................................................................................................................... 6 2.1.2 冯·诺依曼纠缠熵..................................................................................................................................................8 2.1.3 纠缠缩放..................................................................................................................................................................................10 2.1.4 协方差矩阵方法..................................................................................................................................................................................15 2.2 共形场论..................................................................................................................................................................................15 . . . . 19 2.2.1 共形不变性 . . . . . . . . . . . . . 19 2.2.2 希尔伯特空间形式 . . . . . . . . . . . . . . 22 2.2.3 最小模型 . . . . . . . . . . . . . . . . . 25 2.2.4 一个例子:格子伊辛模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .三十七
此外,我们推导出信息能量交换方程(I = (E - mgh) / k),该方程将信息能量与势能、引力常数和比例常数 k 联系起来。该方程使我们能够分析信息系统中信息能量与其他形式能量之间的相互作用,为理解信息动态提供了一个统一的框架
最近有人提出,嘈杂的中型量子计算机可用于优化经典计算机上格子量子场论 (LQFT) 计算的插值算子构造。这里,开发并实施了该方法的两种具体实现。第一种方法是最大化插值算子作用于真空状态与目标本征态所创建状态的重叠或保真度。第二种方法是最小化插值状态的能量期望值。这些方法在 (1 + 1) 维中针对单一味大质量 Schwinger 模型的概念验证计算中实现,以获得理论中矢量介子状态的量子优化插值算子构造。虽然在没有量子门误差噪声的情况下,保真度最大化是更好的选择,但在概念验证计算中,能量最小化对这些影响更具鲁棒性。这项工作具体展示了中期量子计算机如何用于加速经典 LQFT 计算。
5 拓扑场论和量子码 149 5.1 关键范畴和关键霍普夫代数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... 184 5.5.6 拓扑量子计算和 Turaev-Viro 模型 . . . . . . . . . . . . 185