前 1% 89 0.18 138 0.43 2904 1156 3.49 2.86 2.11 7.3 4.7 2.45 3118 ( 84 至 (0.17 至 ( 129 至 (0.40 至 ( 2596 至 ( 1093 至 ( 3.24 至 ( 2.67 至 ( 1.86 至 ( 6.9 至 ( 3.5 至 (2.34 至 (3044 至 105) 0.24) 162) 0.51) 3417) 1395) 4.26) 3.34) 3.18) 9.1) 9.1) 2.49) 3336)
摘要 - 采用信息技术进行教学和学习活动引起了教师之间的技能。在过去的几年中,中国教师的技术训练研究仅限于诸如诸如技术超负荷,技术复杂性,技术 - 系统性,技术 - 不确定性和技术入侵之类的因素,并忽略了新技术采用的新兴因素。此外,所有技术训练研究都没有根据技术训练因素来识别教师群体的进一步审议。这项研究涵盖了中国湖南教师的技术应力因素识别范围和教师集群的产生范围。通过问卷调查来收集有关五个技术因素的教师协议,并使用统计方法来衡量回答。调查结果表明,所有调查的因素与中国教师Hunan的Technostress都有积极和显着的关系。使用K-均值聚类方法将教师聚类为五个不同的群集。这项研究发现了新技术是一种新技术,并成功地将教师聚集在重要的集群中,以使中国的教育部门能够为教师提供有针对性的技术培训。
在 [17] 中,作者考虑了一种扭曲方案,该方案采用基于最小二乘的时间位移和对齐底层模型。Gibbons 和 Stahl [20] 也考虑了 ERP 平均的响应时间校正:作者假设 ERP 分量(尤其是后期分量)的时间会有显著变化,因此他们建议使用多项式表达式来校正响应时间,该表达式基于先前确定的平均响应时间和线性插值。[21] 中介绍了不考虑噪声、抖动或新频率的出现而迭代使用平均 DTW。在 [22] 中,作者提出了一种成本矩阵的修改,该修改可以消除在对非线性对齐的信号周期进行平均时抑制噪声的不利结果。
强化学习(RL)是机器学习中的一个活跃子区域,已成功应用于解决复杂的决策问题,例如玩棋盘游戏[31,32]和视频游戏[22] [22],自主驾驶[18,21],以及最近,将大型语言模型和文本生成模型与人类的preference preferfection and-to anclight [18,21]。RL研究主要集中在离散时间和空间中的马尔可夫决策过程(MDP)上。有关MDP的理论和应用的详细说明,请参见[34]。Wang,Zariphopoulou和Zhou [40]是第一个使用受控扩散过程的RL制定和开发RL的熵调查的,探索性控制框架的人,该过程固有地与连续状态空间和可能的连续作用(可能连续的动作(控制)空间)。在此框架中,随机放松控制被用来表示探索,从而捕获了RL核心的“反复试验”概念。随后的工作旨在通过Martingale方法[14、15、16]和政策优化在连续时间内为无模型RL奠定理论基础[44]。在这里,“无模型”是指潜在的动力学是扩散过程,但是它们的系数以及奖励函数是未知的。[14,15,16]的关键见解是,可以从基于连续时间RL的Martingale结构中得出学习目标。这些论文中的理论结果自然会导致一般RL任务的各种“无模型”算法,因为它们直接直接学习最佳策略而无需尝试学习/估计模型参数。这些算法中的许多算法恢复了通常以启发式方式提出的MDP的现有RL算法。然而,对MDP的RL研究占据了中心阶段的算法的融合和遗憾分析仍然缺乏扩散率。To our best knowledge, the only works that carry out a model-free convergence analysis and derive sublinear regrets are [12] for a class of stochastic linear–quadratic (LQ) control problems and [11] for continuous-time mean–variance portfolio selection, both of which apply/apapt the policy gradient algorithms developed in [15] and exploit heavily the special structures of the problems.本文的目的是通过对[16]中引入的(小)Q学习的定量分析以及通常非线性RL问题的相关算法来填补这一空白。(big)Q-学习是离散时间MDP RL的关键方法,但Q功能在连续的时间内崩溃,因为它不再依赖于时间步长无限时间小时的操作。[16]提出了Q功能的概念,Q功能是Q功能在时间离散化方面的第一阶导数。
摘要。网络入侵ICT经济和物理损害中的关键基础设施。需要进行广泛的研究来识别和减轻电网基础设施的入侵。现代解决方案是使用数据科学时间序列方法根据从传感器收集的电网数据来识别入侵。本文介绍了数据科学时序列建模方法的新愿景,以将其与现有的电力系统安全系统集成在一起。在本文中,高级自回旋移动平均值(AARMA)模型旨在检测给定数据集的可能入侵。攻击预测是一种模型,可以使用传感器的实时数据输入来预测可能的网络入侵。通过研究传感器数据集的统计特性,可能具有高精度约为90%的侵入检测。使用AARMA,操作员拥有一个extect Alert System的好处,以调整其骗局和其他资源分配,以应对影响低的入侵。MATLAB软件用于使用拟议的AARMA模型来监视IEEE 9-BUS和IEEE 33-BUS测试系统,以针对可能的网络攻击。
免责声明本文提供的数据的知识产权归S&P Global和/或其分支机构拥有或许可。未经标准普尔Global的事先同意,不允许任何未授权的使用,包括但不限于复制,分发,传输或其他任何数据的其他数据。S&P Global不得对本文包含的内容或信息(“数据”),数据中包含的内容或信息(“数据”)有任何责任,义务或义务。在任何情况下,S&P全球均不对使用数据的使用引起的任何特殊,偶然或结果损害均不承担任何责任。采购经理的Index™和PMI®是标准普尔全球公司的商标或注册商标,或者已获得S&P Global Inc和/或其分支机构的许可。
肯塔基州的系统,可以在县界转移,我们在另一个州不能做同样的事情。如果在另一个州没有现有案件开放,我们无能为力提供其他州管辖权。- 需要解释器;必须翻译只需花费更多的时间。在有强大的难民人口,安排口译员的地区以及律师与客户为法院做准备的能力中,可能非常困难且耗时。***这不是一个详尽的清单!我很快就准备了证词,除了对云母法官的意见和观察的摘要之外,不应将其依靠。
摘要:为了对预期的气候变化做出适当的政策响应,需要准确模拟和预测未来的变暖。我们研究了 CMIP6(气候模型比较计划第六阶段)气候模型对全球和北极平均地表气温的模拟。大多数模型高估了观测到的平均全球变暖。在所考虑的 19 个模型中,只有 7 个模拟的全球变暖在 2014-2023 年平均值和 1961-1990 年参考期之间观测到的变暖平均值的 ± 15% 以内。10 个模型高估了全球变暖超过 15%,只有一个模型低估了全球变暖超过 15%。CMIP6 气候模型对北极变暖的模拟比对全球变暖平均值的模拟要好得多。原因是模型对北极变暖的高估和低估分布均匀,而大多数模型高估了全球变暖平均值。8 个模型与观测到的北极变暖的误差在 ± 15% 以内。只有三个模型对全球平均温度和北极温度的模拟准确度在±15%以内。
在当前气候模型中,全球变暖下的水文周期的预计变化仍然高度不确定。在这里,我们证明了观察性过去的变暖趋势可用于有效地在全球和区域尺度上的平均值和极端降水中有效地占领。这种约束的物理基础依赖于各个模型中相对恒定的气候灵敏度以及模型之间区域水文敏感性的合理一致性,这受大气湿度的增加而支配和调节。对于高排放情况,在全球平均水平上,预计的平均降水量变化从6.9降低至5.2%,而在极端降水中的降水量从24.5降低至18.1%,而间模型方差分别降低了31.0和22.7%。此外,约束可以应用于中间 - 高纬度地区的区域,特别是在土地上。这些约束会导致空间解决的校正,这些校正偏离了全局平均校正。本研究提供了全球范围内受到限制的水文反应,对特定区域的气候适应性有直接影响。