描述观察到的数据与其估计的潜在变量之间的关联测试。JackStraw软件包提供了一种重采样策略和测试方案,以估计观察到的数据及其潜在变量之间关联的重要性。取决于数据类型和分析目的,潜在变量可以通过主体分析(PCA),因子分析(FA),K-均值聚类以及相关的无监督学习算法来估算。jackstraw方法学习了本循环分析中固有的过度拟合特征,在该特征中,观察到的数据用于估计潜在变量,并再次用于测试估计的潜在变量。当PCA估算潜在变量时,JackStraw可以通过低维主组件(PC)估计,可观察到的变量和潜在变量之间的统计测试对观察到的变量和潜在变量之间的关联。这一范围内导致识别与PC显着相关的变量。同样,诸如K-均值聚类,围绕MEDOIDS(PAM)和OTHERS的诸如K-均值聚类和others的无关聚类,在高维数据中找到相干组。通过测试数据和群集中心之间的关联,JackStraw估计了集群成员资格的统计意义。聚集成员身份,并应用于对Single细胞RNA-Seq(SCRNA-SEQ)中细胞身份的无监督评估。
OMB 通过将每年的折现率建模为缓慢移动趋势成分(随机游走)和周期性成分之和,估算出未来 30 年以后的社会时间偏好率。OMB 假设随机游走中的创新呈正态分布,均值为零,方差为 0.04;周期性成分为 AR(1) 过程,AR 参数设置为 0.7,创新呈正态分布,均值为零,方差为 0.9。每年的利率都被限制为非负值。OMB 模拟了 100,000 条折现率路径,计算了这些路径上的预期折现因子,并计算了与此预期折现因子路径一致的远期利率。2 OMB 提供了 150 年期利率表;超出此时间段的利率可应机构要求从 OMB 获得。
2 前后对比特别容易出现一种称为“回归均值”的错误。即在出现异常高或低的值之后,下一个值通常会更接近平均值(或均值)。例如,如果患者被选中接受某项服务,因为他们被认为对这项服务有更大的需求,那么在接受服务后发现的改善可能反映的是随时间推移的正常(统计)变化。这可能会被误认为是改善。请参阅 https://www.health.org.uk/newsletter-feature/why-before- and-after-analyses-can-give-misleading-results。避免这种错误的最佳方法通常是设立一个比较组,理想情况下是随机选择,如果做不到这一点,则在两个组中匹配参与者。如果这不可能,那么在寻求选择资源丰富或资源匮乏的用户时,一种选择是进行多次基线/之前测量,并根据其平均值进行选择。
摘要。我们介绍了旨在以统一的方式解决连续空间均值场(MFG)和平均场控制(MFC)问题的增强学习算法的开发和分析。所提出的方法通过参数化的分数函数将参与者 - 批判性(AC)范式与平均场分布的表示形式配对,可以以在线方式进行有效更新,并使用Langevin Dynamics从产生的分布中获取样品。AC代理和分数函数被迭代更新以收敛到MFG平衡或给定平均领域问题的MFC Optimum,具体取决于学习率的选择。算法的直接修改使我们能够求解混合的均值场控制游戏。使用在有限的地平线框架中使用线性界面基准来评估我们的算法的性能。
系统抽样是有限总体调查中常用的概率设计,参见 WG Madow 和 LH Madow”[1]。除了简单之外,系统抽样提供的估计量对于某些类型的总体来说比简单随机抽样或分层随机抽样更有效。Hajeck [2]、Cochran [3] 和 Gautschi [4]。后来,利用辅助变量信息估计总体均值的问题也得到了许多作者的讨论,其中包括 Quenouille [5]、Hansen 等人[6]、Swain [7]、Banarasi 等人[8]、Kadilar 等人[9]、Robson [10]、Singh 等人[11]、Singh 等人[12]、Singh 等人[13]、Singh 等人[14]、Kushwaha 等人[15]和 Khan 等人。 [16]、Khan 等人 [17]、Singh [18]、Shukla [19]、Koyuncu 等人 [20]、R. Singh 等人 [21]、R. Singh 等人 [22]、Bahl 等人 [23]、Srivastava 等人 [24]、Tailor 等人 [25] 和 Ozel Kadilar 等人 [26]。考虑一个大小为 N 个单位的有限总体。从第一个单位和每个后续单位中随机抽取大小为 n 的样本,则 N = 其中和为正整数,因此,将有大小为的样本,并观察样本中选定的每个单位的研究变量和辅助变量。令表示第个样本中第个单位的值。然后,系统样本均值定义如下:和总体均值的无偏估计量,为了获得一阶近似的估计量,使用以下误差项:
本文介绍了K-均无监督的机器学习算法的新应用,以在电子设备的重合离子辐照实验中识别噪声中的单个事件瞬态(SET)事件的问题。我们通过分析MOSFET晶体管的几种重型离子照射产生的集合事件的实验数据集来探索K-均值算法的性能。分别使用隔离森林和随机森林算法研究了所选特征(平均偏差,偏度和峰度)的数据异常和有效性。结果表明,K均值算法具有很高的能力,可以使用前四个统计矩作为特征从噪声中识别事件,从而允许将这种方法用于现场事件检测和诊断,而无需以前的算法训练或实验数据的预先分析。
普通语言摘要在2023年,冬季南极海冰地区降至自1978年底开始以来卫星记录以来最低的。仍在争论中,自然变化可以解释这一低范围,以及气候变化可以解释多少。全球气候模型是用于研究过去和预测未来全球变化的工具。我们表明,在没有气候变化的情况下,这些模型的最新一代极不可能模拟从2023年冬季观察到的均值的均值减少。包括强烈的气候变化四倍,使这种减少的机会很少,但是机会仍然很低。当模拟这些罕见的减少时,海冰大约需要10年才能恢复到一个新的,较低的区域:这表明南极海冰在未来几十年中可能会过渡到新的,较低的状态。
绝对度量的分散量包含与原始数据集相同的单元。绝对分散方法以标准或均值偏差等观测值偏差的平均值表示了差异。它包括范围,标准偏差,四分位数偏差等。
使用分层 K 均值聚类的激光雷达数据分类 Nesrine Chehata a,b , Nicolas David b , Frédéric Bretar b a Institut EGID - Université Bordeaux 3 - Equipe GHYMAC Allée Daguin 33607 Pessac- Nesrine.Chehata@egid.u-bordeaux3.fr乙国家地理研究所 - MATIS Av. 实验室Pasteur 94165 St. Mandé cedex, France- nicolas.david@ign.fr, frederic.bretar@ign.fr Commission III, WG III/3 关键词:遥感、LIDAR、层次分类、DTM、多分辨率 摘要:本文涉及使用激光雷达点云过滤和分类来建模地形,更一般地用于场景分割。在本研究中,我们建议使用众所周知的 K 均值聚类算法来过滤和分割(点云)数据。K 均值聚类非常适合激光雷达数据处理,因为可以根据所需的类别使用不同的特征属性。当仅处理 3D 点云时,属性可能是几何或纹理的,但当联合使用光学图像和激光雷达数据时,属性也可能是光谱的。该算法基于固定的邻域大小,可以处理植被茂密的陡峭地貌、山区区域和呈现微地形的地形。我们的算法的新颖之处在于提供分层分割聚类来提取地面点。聚类分割的数量用于自动限定分类可靠性。这一点在以前的工作中很少被处理。此外景观< /div>
随机过程在物理学、数学、工程学和金融学中起着基础性的作用。量子计算的一个潜在应用是更好地近似随机过程的性质。例如,用于蒙特卡罗估计的量子算法将随机过程的量子模拟与振幅估计相结合,以改进均值估计。在这项工作中,我们研究了与蒙特卡罗方法兼容的模拟随机过程的量子算法。我们引入了一种新的随机过程“模拟”量子表示,其中时间 t 时的过程值存储在量子态的振幅中,从而能够以指数方式高效编码过程轨迹。我们表明,这种表示允许使用高效量子算法来模拟某些随机过程,这些算法使用这些过程的光谱特性与量子傅里叶变换相结合。特别是,我们表明我们可以使用门复杂度为 polylog(T) 的量子电路来模拟分数布朗运动的 T 个时间步,该电路可以连贯地准备布朗路径上的叠加。然后,我们表明这可以与量子均值估计相结合,以创建端到端算法,用于估计时间 O (polylog(T)ϵ − c) 内过程的某些时间平均值,其中 3 / 2 < c < 2 是分数布朗运动的某些变体,而经典蒙特卡洛运行时间为 O (Tϵ − 2),量子均值估计时间为 O (Tϵ − 1)。在此过程中,我们给出了一种有效的算法,以相干方式加载具有不同方差的高斯振幅的量子态,这可能是独立的兴趣所在。