摘要:地下储氢已被公认为储存大量氢气的关键技术,有助于氢经济的工业规模应用。然而,人们对地下储氢的了解甚少,导致项目风险很高。因此,本研究考察了盖层可用性和氢气注入率对氢气回收率和氢气泄漏率的影响,以解决与地下储氢有关的一些基本问题。建立了三维非均质储层模型,并利用该模型分析了盖层和氢气注入率对氢气地下储存效率的影响。结果表明,盖层和注入率对氢气泄漏以及捕获和回收的氢气量都有重要影响。结论是,当没有盖层时,较高的注入率会增加氢气泄漏。此外,较低的注入率和盖层可用性会增加回收的氢气量。因此,这项工作为地下储氢项目评估提供了基本信息,并支持能源供应链的脱碳。
fons van van der plas a,b,1,皮特·曼宁A,B,圣地亚哥索要A,埃里克·艾伦(Eric Allan) Benneter K,Damien Bonal L,Olivier Bouriaud M,Helge Bruelheide F,N,Filippo Bussotti O,2,Monique Carnol P,Bastien Castagneyrol I,J,J,Yohan Charbonnier I,J,J,J,David Anthony Coomes Q,Andrea Coppi Or,Andrea Coppi or,Andrea Coppi C. Bastina C. Bastinans C. Bastias C. Thyme Domisch U,LeenaFinérU,Arthur Gessler V,AndréGranierL,Charlotte Grossiord W,Virginie Guyot I,J,J,X,StephanHättenschwilerY,HervéJactelI,J,J,J,Bogdan Jaroszewicz Z,François-xavavierJolyYOLY YOLY YOLYS THOMAS。 Jucker Q, Julia Koricheva AA, Harriet Milligan AA, Sandra Mueller C, Bart Muys T, Diem Nguyen BB, Martina Pollastrini or, Sophia Ratcliffe E, Karsten Raulund-Rasmussen S, Federico Selvi or, Jan Stenlid BB, Fernando Valladares R, CC, Lars Vesterdal S, DawidZielínskiZ和Markus Fischer A,B,DD
摘要间充质基质/干细胞(MSC)疗法已成为癌症治疗中的一种变革性策略,利用MSC的独特再生和免疫诱导特性来解决传统方法的局限性。这项全面的审查探讨了多方面的应用程序和复杂的癌症作用机制。MSC具有显着的肿瘤靶向能力,利用其先天的归巢能力来选择性迁移到肿瘤部位。该特性用于靶向药物递送,优化治疗效果,同时最大程度地减少对健康组织的附带损害。此外,MSC的免疫调节能力在塑造肿瘤微环境中起着关键作用。通过抑制促炎信号并促进抗肿瘤免疫反应,MSC创建了一种抑制肿瘤生长的环境。工程MSC进一步用作抗癌药物的携带者,促进直接递送到肿瘤部位并减轻全身毒性。此外,MSC的放射保护作用提供了一个独特的机会,可以在放射疗法期间增强治疗窗口,从而保护健康组织。然而,诸如实现一致的肿瘤向潮流,解决安全问题以及标准化方案等挑战强调了对正在进行的研究的需求。严格的临床试验必须建立在各种癌症类型中MSC治疗的安全性和效率。当我们应对这些挑战时,通过MSC疗法进行个性化和有效的癌症治疗的希望继续展开,在与癌症的无情斗争中为改善结果提供了新的希望。
低出生体重(LBW)增加了神经发育障碍(NDDS)的风险,例如注意力缺陷/多活化障碍和自闭症谱系障碍,以及脑瘫,不存在预防性措施。胎儿和新生儿中的神经炎症在NDD中起着主要的致病作用。同时,脐带衍生的间充质基质细胞(UC-MSC)具有免疫调节特性。因此,我们假设在产后早期的全身服用UC-MSC可能会减弱神经炎症,从而阻止NDD的出现。受到轻度子宫内灌注不足的大坝所生的LBW幼崽在单突触反应中表现出明显降低,并且从产后第4天(P4)到P6的刺激频率增加,从而提高了静脉内治疗性,这提示了人类UC-MSSC(1 c-M-Scs)的不良细胞(提示)。在青春期的三座社交测试表明,只有LBW雄性表现出令人不安的社交能力,这往往可以通过UC-MSC治疗来改善。其他参数,包括通过开放式测试确定的参数,并未通过UC-MSC处理可显着改善。血清或脑脊液水平的促炎细胞因子的水平未升高,而LBW幼崽中的血清或脑脊液水平并未升高,UC-MSC治疗不会降低这些水平。总而言之,尽管UC-MSC治疗可防止LBW幼犬过度兴奋,但对NDD的有益效果是边缘的。
Krista Thongphanh批准:__________________________________,委员会主席金伯利·穆里根(Kimberly Mulligan)博士。 __________________________________,第二读者罗伯特·克劳福德(Robert Crawford)博士__________________________________,第三读者Gerhard Bauer ____________________________________
摘要。增加IL-15和IFN-γ的特征是氟康唑相关的脱发(FRA)。缺氧间充质干细胞(HMSC)的分泌组具有抗炎能力,可以用作脱发治疗。因此,该研究旨在确定HMSC的局部施用对雄性Wistar大鼠的IL-15和IFN-γ基因表达和秃头的局部施用,这是FRA的模型。MSC,在缺氧下培养24小时,并产生一个无菌的分泌组,以水性凝胶软膏进行治疗。总共将24只男性Wistar大鼠分为四组:K1仅用于安慰剂给药的健康控制; K2用于阴性对照,其中包含FRA大鼠通过从第7至14天施用氟康唑,并继续安慰剂给药到第29天;对用200 mg/天的局部凝胶治疗的FRA大鼠组进行了处理,其中含有10%的HMSC Sectionome,用于K3和20%的HMSCS分泌组。观察,以使用qPCR分析头发生长以及IL-15和INF-γmRNA表达。分析显示,局部HMSCS Sertectome Gel给药后,IL-15和IFN-γmRNA表达显着降低(P≤0.001),秃头降低高达60%。显着的结果是局部凝胶含有HMSC的20%。基于研究结果,含有20%HMSC分泌组的局部凝胶剂量对改善FRA的状况具有最佳影响。这项研究可能有助于优化HMSC分泌疗法中的剂量和治疗方法。
糖尿病是普遍的全球健康挑战,显着影响社会和经济福祉。胰岛移植越来越多地被认为是1型糖尿病的可行治疗方法,旨在恢复内源性胰岛素的产生并减轻与外源胰岛素依赖性相关的并发症。我们回顾了间充质干细胞(MSC)在增强胰岛移植的效率方面的作用。MSC以其免疫调节特性和分化潜力为特征,越来越被视为在增强胰岛移植物存活,减少免疫介导的排斥反应以及支持血管生成和组织修复方面被视为有价值。MSC衍生的细胞外囊泡的利用进一步典型的创新方法来改善移植结果。但是,诸如MSC异质性和治疗应用的优化之类的挑战持续存在。先进的方法论,包括人工智能(AI)和单细胞RNA测序(SCRNA-SEQ),被强调为解决这些挑战的潜在技术,潜在地转向MSC疗法,朝着更有效的,个性化的糖尿病治疗方式。本综述表明,MSC对于推进糖尿病治疗策略,尤其是通过胰岛移植至关重要。这凸显了MSC在再生医学领域的重要性,承认其潜力和必须采取的挑战,以充分实现其治疗诺言。
免疫调节,9个血管生成支持,10和抗纤维性效应,11这些细胞控制再生所需的组织修复的关键第一步骤。12这些效果解释了在许多病理生理学中使用MSC的普及,特别是在免疫调节环境中使用脂肪组织(ASC)的同种异体MSC。7,13迄今为止,据报道,使用MSC进行了300多次临床试验,该试验已在ClinicalTrials.gov中完成,其中只有大约20个在第三阶段中。MSC的临床使用似乎仍然是安全的,MSC治疗与急性毒性,死亡,感染,器官系统性衰竭或恶性肿瘤之间没有关联。14 - 16然而,如果MSC的血管内/内部注射似乎是安全的,并且对某些疾病的治疗疗法,则由于对目标部位不足的归宿,可能会限制17个治疗效用。18对于许多ARD组织缺陷,同种异体MSC的局部给药适合通过原位旁分泌因子递送来支持组织修复。18此外,组织工程研究强调了支持3D生物力学在MSC促进活动中的材料的重要性,并增强了MSC的保留和存活。18,19的确,据报道,在适当的生物材料载体中提供的MSC交付,例如血小板液压凝胶,据报道在多个级别上发挥作用,包括外科凝结,新生血管造成的纤维凝块维护,新生血管造成的,免疫调节,免疫调节和导致内在幼虫的招募。20 - 23这样的载体和ASC的关联是由欧洲药品局将其分类为合并的晚期治疗医学产品。
心脏病是全球死亡率的主要原因,发病机理是冠状动脉疾病不足的血液供应。它导致营养和氧气的供应不足,并导致心肌纤维化改善,导致心力衰竭和死亡。尽管搭桥手术是对心脏病的最常见治疗方法,但恢复心脏组织的血液供应会增加疾病状态并引起第二次损伤。间充质干细胞(MSC)提供了一种治疗这种经典疾病的新方法。MSC源自中材细胞,并居住在许多器官中,例如口香糖,骨骼肌肉,脂肪组织,骨骼,心脏,心脏,甚至人脐带血(Hipp and Atala,2008; Suzuki et al。,2017; Bagno等,2018)。MSC被重新种植到损伤区域将有两种影响:1)维持具有分化能力的重要细胞过程,2)以旁分泌方式提高生存能力,以促进细胞活性,诱导细胞分裂并抑制自噬。但是,已经证明MSC不能长时间留在心脏组织中(Muller-Ehmsen等,2006; Hu等,2018)报告说,心肌细胞以旁分线的方式抑制MSC的增殖和分化。在此基础上,MSC的外泌体成为研究人员作为琥珀尼姆的观点。间充质干细胞外泌体(MSC-exos)是衍生自MSC的双层脂质纳米层(30 - 150 nm),据报道是恢复损伤的。例如,Kinnaird等。报道说,MSC条件的培养基改善了肢体功能,减弱的发生率,减少小鼠后肢缺血的肌肉萎缩和纤维化(Kinnaird等,2004)。MSC-EXOS增强了人脐静脉内皮细胞(HUVEC),以构建梗塞大小的导管形成和减小,炎症反应以及心肌梗死的心脏功能改善(MI)