单隔间加温柜由 22 号不锈钢外壳和门构成,手柄和铰链设计用于承受高强度使用。柜子由 Halo Heat® 系统加热,该系统包含安装在隔间壁上的低瓦特密度电缆。该系统提供均匀分布的热量,无需热循环风扇。柜子由可调节的电子恒温器控制,其中包括热量指示灯 LED、温度设置按钮、温度升高和降低按钮以及用于监控隔间温度的数字显示屏。恒温器的温度范围为最低 90°F (32°C) 至最高 200°F (93°C)。该室配备一 (1) 个带搁板的白色环氧涂层毯式支撑组件,并配有一 (1) 套 5 英寸 (127 毫米) 重型脚轮 — 两个刚性脚轮和两个带刹车的旋转脚轮。
对 Timnit Gebru 和 Google 道德 AI 团队的支持 过去三年来,加州大学伯克利分校的 AFOG 受益于 Google 道德 AI 团队的几位成员参加我们的工作组会议和研讨会。最近,该团队的联合负责人 Timnit Gebru 博士因要求在她和她的团队成员进行的研究的内部审查过程中提高透明度和程序公平性而被解雇。AFOG 小组的成员研究数字技术在社会中的作用,并寻求建立更好、更公平的系统的方法。数十年来的技术史研究表明,技术不可避免地具有政治性。它们以独特的方式构建和调解人与人之间的关系。虽然数字技术具有巨大的潜在效益,但总有缺点、风险和危害需要考虑。这些风险并非均匀分布,而是经常遵循现有权力等级制度。根据我们在此领域的研究,我们了解到:
2.2.1 空间段 铱星空间段利用低地球轨道上的 66 颗运行卫星群,如图 2-2 所示。这些卫星位于近极地轨道的六个不同平面上,高度约为 780 公里,大约每 100 分钟绕地球一圈,速度约为 27,088 公里/小时。11 颗任务卫星均匀分布在每个平面内,充当通信网络中的节点。六个同向旋转的平面在经度上相隔 31.6 度,因此平面 6 与平面 1 的反向旋转部分之间的间隔为 22 度。相邻奇数和偶数平面中的卫星位置彼此偏移卫星间距的一半。该卫星群确保地球上的每个区域始终被至少一颗卫星覆盖。目前有 10 颗额外的在轨备用卫星,可在发生故障时替换任何无法使用的卫星。
人工智能(AI)的出现已使对各种应用的材料进行了全面的探索。但是,AI模型通常优先考虑科学文献中经常遇到的材料示例,从而根据固有的物理和化学属性限制了合适的候选者的选择。为了解决这种不平衡,我们生成了一个数据集,该数据集由OQMD,材料项目,JARVIS和AFLOW2数据库的1,453,493个自然语言材料叙事组成,这些叙述基于从头算的计算结果,这些结果在周期表中更均匀分布。基于三个标题:技术准确性,语言和结构以及内容的相关性和深度的人类专家和GPT-4对生成的文本叙述进行了评分,显示了相似的分数,但内容的深度是最滞后的。多模式数据源和大语言模型的集成具有巨大的AI框架潜力,以帮助探索和发现固态材料以进行特定的利益应用。
正在进行大量研究以开发具有更高容量和特定能量的安全耐用电池[3,4]。储能系统的演变导致了锂离子电池的开发。目前,锂离子电池已成为主要技术,尤其是在电动汽车市场,由于其高能量和功率,长寿周期以及缺乏记忆效应[5]。通常,锂离子电池以串联和/或并行连接,以创建具有所需电压和容量的储能系统。在操作过程中,一个隔室中许多细胞的组装会导致温度升高,从而导致局部磨损甚至爆炸(如果无法解决)[6,7]。Li-ion电池的最佳工作温度范围在0到35°C,可安全使用[8,9]。因此,需要一个空调系统来消除多余的热量并确保移动电动汽车充电单元(MECU)内的温度均匀分布。锂离子电池对高温和低温敏感。因此,保持热管理以保持细胞温度
摘要 由于缺乏可用的 GPS 信号,室内定位和微定位系统变得复杂。蓝牙和 WiFi 填补了这一空白,但这些系统在用户移动时难以保持准确性。使用平滑算法和运行 iBeacon 软件的均匀分布的 BLE 信标,搭配定制设计的 iOS 应用程序,在用户移动时可实现 2 米的精度。本文介绍了以下研究成果:1) 一种使用低成本 BLE 信标的新型室内定位和导航预测系统,当用户以步行速度移动时,其精度为 2.2 米;2) 一种通用室内微定位系统,可以轻松快速地部署到新环境中(数小时内);3) 5 种平滑算法的比较和性能分析;4) 一种架构模型,其他研究人员可以通过它扩展我们在室内定位和导航方面的工作。
量子计算机承诺执行某些被认为对古典计算机棘手的任务。玻色子采样是这样的任务,被认为是证明量子计算优势的有力候选者。我们通过将50个不可区分的单模单模状态发送到具有完整连接性和随机矩阵的100模式超级失误干涉仪中,通过将50个不可区分的单模单模式挤压状态发送到了高斯玻色子采样 - 整个光学设置是相锁的 - 并使用100个高效的单光子检测器对输出进行采样。针对利用热状态,可区分的光子和均匀分布的合理假设验证了所获得的样品。光子量子计算机Jiuzhang最多生成76个输出光子点击,该光子可产生10 30的输出状态空间尺寸,而采样速率比使用最先进的仿真策略和超级计算机的采样率更快。t
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
摘要。本研究探讨了通过摩擦搅拌工艺 (FSP) 利用 ZrB2 增强材料来增强铝基复合材料的制造。实现 ZrB2 颗粒的均匀分布对于优化材料性能至关重要。使用 FSP 添加 ZrB2 纳米颗粒可显着改善铝的各种机械性能。拉伸强度提高了 20.25%,硬度提高了 35.67%,疲劳强度提高了 23.67%,耐磨性提高了 29.45%。这些增强强调了纳米颗粒增强材料在增强铝基体抵抗机械应力和磨损机制方面的有效性。结果证明了基于 FSP 的技术在定制铝基复合材料的机械性能以适应各种应用方面的潜力。这项研究为开发具有增强机械特性的高性能材料的先进制造方法提供了宝贵的见解,促进了铝复合材料技术的进步,以满足需要卓越强度、耐用性和耐磨性的行业的需求。