在运输领域,电池和插电式混合动力汽车被全球采用,以减轻二氧化碳排放的方法。与此相一致,全球许多国家和政策机构提出了车辆排放目标,并在不久的将来采用和使用电动汽车的目标。需要对运输的广泛电气化,PV产生的电力和其他可再生能源,以利用EV的采用量为更重要的CO2降低。PV发电的分布性质为电池电动汽车充电提供了新的机会。电动汽车低碳充电的选项包括从现有的电网网络充电使用PV或其他可持续电源,从当地PV发电的专用充电点充电,或直接和独立地使用车载PV(PV供电车辆)。为了促进减少运输部门的二氧化碳排放并增强PV市场的扩展,IEA PVPS任务17的目的是阐明PV利用在运输中的潜力,并建议如何实现这些概念。任务17的范围包括各种PV驱动的车辆,例如乘用车,轻型商用车,重型车辆和其他车辆,以及用于电气系统和基础设施的PV应用,例如使用PV,电池和其他电力管理系统充电基础设施。在这些选项中,本报告专注于PV供电的车辆,并具有载板集成的PV Systems(VIPV)。这是本报告的主题。可以将VIPV系统描述为PV表面之间的组合,该组合集成在汽车主体,特定的电子系统和板上能源管理系统(EMS)之间,该系统与PV Energy的存储元件有关。在大多数情况下,PV元件的主要特征是标准辐照度(1000 W/m²,AM1.5 @25°C)下的峰值功率(WP)。这是预测我们每年可以从太阳获得和使用的太阳能的关键参数。由于PV表面不是平坦的,而是在汽车太阳能屋顶上弯曲,因此不匹配以辐照度和细胞温度为单位。它由于模块表面上的光入角度不均匀而导致能量损失。
图3:在这项工作中探索的四个温度下,压缩(黑色实线)和减压(红色实线)循环的全局四面体阶参数f Th。面板(a)在t = 80 k时报告循环,面板(b)在t = 100 k,面板(c),t = 120 k和t = 140 k的面板(d)。箭头表示压缩/减压的方向。圆圈代表拐点的基因座。
1*Pragati 工程学院,机械工程系副教授,安得拉邦 2* Aditya 工程学院,机械工程系副教授,安得拉邦 3*JNTU KAKINADA,机械工程系教授,安得拉邦 摘要 本研究旨在通过实验和计算研究风洞中速度分布的均匀性。风洞是一种仪器,用于检查流体流过完全浸没的物体时产生的流线和力。uni-insta 的风洞(300 毫米*300 毫米)设计为具有较大的工作段,以便能够布置大量场地模型。该风洞内置边界层模拟系统,可以很好地模拟大气速度梯度。风洞围绕分段式木质框架建造,在沉降长度和工作段采用外部级胶合板,侧面采用层压板覆盖,便于维护。内置钟形安装入口,后面是平滑的沉降长度室,由分级良好的蜂窝状细网组成。工作部分的侧面板是透明的丙烯酸盖,可提供较大的可视区域。额外的哑光后侧面板为烟雾轨迹提供摄影构造。工作部分的顶板是可拆卸的,以便固定模型。关键词:- uni-insta
电动汽车低碳充电的选项包括从现有的电网网络充电使用PV或其他可持续电源,从当地PV发电的专用充电点充电,或直接和独立地使用车载PV(PV供电车辆)。为了促进减少运输部门的CO 2排放并增强PV市场的扩展,IEA PVPS任务17的目的是阐明PV利用在运输中的潜力,并建议如何实现这些概念。任务17的范围包括各种PV驱动的车辆,例如乘用车,轻型商用车,重型车辆和其他车辆,以及用于电气系统和基础设施的PV应用,例如使用PV,电池和其他电力管理系统充电基础设施。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
摘要生成随机数对于许多现实世界应用很重要,包括密码学,统计抽样和蒙特卡洛模拟。受测量的量子系统通过Born的规则产生随机结果,因此自然研究使用此类系统以生成高质量的随机数的可能性是很自然的。但是,当前的量子设备会受到错误和噪声的约束,这可能会使输出位偏离Uni-Form分布。在这项工作中,我们提出和分析两个方案,可用于增加带有Hadamard Gate的电路和嘈杂的量子计算机中的测量值时获得的位置的均匀性。这些协议可以在其他标准过程之前使用,例如随机性扩增。我们对量子模拟器和实际量子计算机进行实验,获得的结果表明,这些方案对于提高生成的局部的概率很有用,使其通过统计测试进行均匀性。
超均匀性是一种新兴的特性,其密度n量表的结构因子为sðqÞ〜Qα,具有α> 0。我们表明,对于甘露模型所属的保守定向渗透(CDP)类,CDP中的密度n与depinning的界面位置U之间存在精确的映射,nðxÞ¼n0Þ¼n0Þ∇2u2 u - ,其中n 0是保守的粒子密度。因此,超均匀性指数等于α¼4 -d -2ζζ,ζ在depinning时的粗糙度指数和d尺寸为d。在d¼1中,α¼1= 2,而0。6>α≥0对于其他d。我们的结果非常适合文献中的模拟,除了在D¼1中,我们自己执行自己的模拟以确认这一结果。在两个看似不同的领域之间存在如此确切的关系令人惊讶,并且铺平了思考超均匀性和倒闭的新途径。作为推论,我们在所有维度上获得了前所未有的精度的结果,在d¼1中精确。这纠正了较早的CDP中超均匀性的工作。
摘要:电铸层厚度不均匀性是制约电铸微金属器件发展的瓶颈问题。微齿轮是各类微器件的关键元件,本文提出了一种提高其厚度均匀性的新制备方法。通过仿真分析研究了光刻胶厚度对均匀性的影响,结果表明随着光刻胶厚度的增加,电流密度的边缘效应减小,电铸齿轮的厚度不均匀性会减小。与传统的一步正面光刻和电铸方法不同,该方法采用多步自对准光刻和电铸工艺制备微齿轮结构,在交替光刻和电铸过程中间歇地保持光刻胶厚度的降低。实验结果表明,该方法制备的微齿轮厚度均匀性比传统方法提高了45.7%。同时,齿轮结构中部区域的粗糙度降低了17.4%。
摘要:在固态锂离子电池(SLIB)研究的领域中,阳极开发仍然是焦点区域,因为固体电解质和阳极之间的接口在确定电池性能中起着至关重要的作用。在各种阳极材料中,由于其广泛的表面积,锋利的裸露边缘和高电导率,垂直排列的石墨烯纳米瓦尔(GNW)是有前途的候选者。这些功能为GNWS带来了提高固态电池效率和容量的巨大潜力。然而,在微波血浆化学蒸气沉积(MWPCVD)设备室中产生的等离子体表现出不均匀的分布,这使得在大面积上实现GNW均匀生长的挑战。为了改善GNW的生长期间的平面均匀性,将驱动电动机安装在基板支架下方,从而使底物在膜沉积过程中以恒定的速度旋转,从而增强了GNWS的平面均匀性。本文还表明,通过底物旋转,SLIBS的电荷分散性能得到改善。与先前报道的通过快速旋转和谐振场中缓慢搏动产生均匀的微波血浆的方法相比,这种设备的这种修饰更简单。此外,使用混合气体可以有效地改善面内GNW膜的均匀性,从而为SLIB阳极电极的质量产生提供可行的参考。
混合元素粉末是金属添加剂粉末中合金粉末的新兴替代品,这是由于可与其生产的各种合金范围及其不开发新颖的原料所节省的成本所致。在这项研究中,通过在BE TI-185粉末上进行SLM,在通过Infra-Red成像和通过同步X射线衍射跟踪表面温度的同时,研究了SLM期间的原位合金和并发微观结构演变。然后,我们进行了mortem电子显微镜(反向散射电子成像,能量分散X射线光谱和电子反向散射衍射),以进一步深入了解微观结构的发展。我们表明,尽管放热混合有助于熔化过程,但激光熔化仅在合金和未混合区域的混合物中产生。全合金和一致的微观结构仅通过在热影响区域的进一步循环才能实现。2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。