摘要:地面振动是爆破活动最不利的环境影响之一,会对邻近的房屋和建筑物造成严重损坏。因此,有效预测其严重程度对于控制和减少其复发至关重要。不同的研究人员提出了几种常规振动预测方程,但大多数仅基于两个参数,即单位延迟使用的炸药量和爆炸面与监测点之间的距离。众所周知,爆破结果受许多爆破设计参数的影响,例如负担、间距、火药系数等。但这些都没有被考虑在任何可用的常规预测器中,因此它们在预测爆炸振动时显示出很高的误差。如今,人工智能已广泛应用于爆破工程。因此,本研究采用了三种人工智能方法,即高斯过程回归 (GPR)、极限学习机 (ELM) 和反向传播神经网络 (BPNN),来估计印度 Shree Cement Ras 石灰石矿爆破引起的地面振动。为了实现该目标,从矿场收集了 101 个爆破数据集,其中粉末系数、平均深度、距离、间距、负担、装药重量和炮泥长度作为输入参数。为了进行比较,还使用相同的数据集构建了一个简单的多元回归分析 (MVRA) 模型以及一种称为多元自适应回归样条 (MARS) 的非参数回归技术。本研究是比较 GPR、BPNN、ELM、MARS 和 MVRA 以确定其各自预测性能的基础研究。八十一 (81) 个数据集(占总爆破数据集的 80%)用于构建和训练各种预测模型,而 20 个数据样本(20%)用于评估所开发的预测模型的预测能力。使用测试数据集,将主要性能指标,即均方误差 (MSE)、方差解释 (VAF)、相关系数 (R) 和判定系数 (R2) 进行比较,作为模型性能的统计评估指标。本研究表明,与 MARS、BPNN、ELM 和 MVRA 相比,GPR 模型表现出更出色的预测能力。GPR 模型显示最高的 VAF、R 和 R 2 值分别为 99.1728%、0.9985 和 0.9971,最低的 MSE 为 0.0903。因此,爆破工程师可以采用 GPR 作为预测爆破引起的地面振动的有效且合适的方法。
简介 CNN 或卷积神经网络是深度学习的一个子集。深度学习是机器学习和人工智能的更广泛的集合。深度学习是一种从数据集中进行复杂学习的方法,并根据数据集创建模型(Patel 等人,2018 年)。深度学习可以是一种监督学习的方式,也可以是一种无监督学习的方式。通常,它有一个现实生活中的问题的解决方案,学习结果可以是监督的、半监督的或无监督的,首先给出一个数据集,然后首先要对数据进行操作,必须清理数据,因为在现实生活中的数据模型中有很多数据缺失,无法用缺失数据创建模型,为此,必须准备数据以供算法运行,在应用算法之前,必须仔细清理数据并了解实际情况,然后才能应用合适的算法,应用算法后,人们将得到基于人工神经网络的理想数据表示(Mongaet al. 2020)。人工神经网络 (ANN) 的名称听起来可能与生物神经元相似,因为其结构与位于大脑内的神经元非常相似,但它与生物神经元有一些关键区别,例如人工神经网络是静态的,而另一个是活体生物体,因此本质上是动态的,另一个是人工神经网络是符号的,生物神经网络是模拟的。深度学习具有多种架构,这种多种架构在许多领域都有多种应用,例如“自然语言处理 (NLP)、医学图像分析、药物设计、生物信息学、语音识别、深度神经网络、卷积神经网络、医学视觉、计算机视觉”。转换或卷积神经网络处理图像恢复。卷积神经网络在“图像分割、裁剪图像分析、脑机接口、图像分类”等领域有着广泛的应用。受深度学习技术在图像处理领域的最新成功的启发,我们利用样本图像集使用反向传播对前馈深度卷积神经网络 (CNN) 与 Inception-ResnetV2 进行训练,以识别 RGB 和灰度值中的模式。然后,给定测试图像的灰度 L 通道,使用训练后的神经网络预测两个 a* 和 b* 色度通道。CNN 在融合层的帮助下生动地为图像着色,同时考虑了局部特征和全局特征。采用两个目标函数,即均方误差 (MSE) 和峰值信噪比 (PSNR),对估计的彩色图像与其基本事实之间的质量进行客观评估。该模型在我们自己创建的数据集上进行训练,该数据集包含 1.2 K 张尼泊尔古老而古老的照片,每张的分辨率为 256×256。损失即 MSE、PSNR,模型的自然度和准确率分别为 6.08%、34.65 dB 和 75.23%。除了展示训练结果之外,还通过用户研究来评估生成图像的公众接受度或主观验证,其中模型在评估彩色结果时显示出 41.71% 的自然度。随着计算机图形渲染和图像编辑技术的巨大进步,计算机生成的假图像通常不能反映现实情况,现在可以很容易地欺骗人类视觉系统的检查。在这项工作中,我们提出了一个基于卷积神经网络 (CNN) 的模型,通过通道和像素相关性来区分计算机生成的 (CG) 图像和自然图像 (NI)。所提出的 CNN 架构的关键组件是一个自编码模块,它将彩色图像作为输入来提取