为了生产出在所需使用寿命内性能更安全、更高效的结构,并计划一定程度的损伤容限,在设计开发和验证过程中充分考虑冗余的影响非常重要。大多数传统设计实践使用线性弹性模型解决整体全局响应,随后使用合理的极限状态方法检查局部组件响应,包括计算局部坍塌。因此,整体结构的安全性和可靠性评估实际上是在组件级别进行的。因此,不允许考虑冗余效应可能对安全性和可靠性产生重大影响的整体结构固有的真正强度储备。同样,通常不考虑某种形式的局部损坏后结构的残余强度,其中冗余提供了维持整体稳定性的机制。
在未来五年内增加和扩展 122 个主要新项目:州长的“重建密歇根”计划将额外增加 35 亿美元的道路资金,这意味着我们将增加和扩展 122 个主要新道路项目,并且在未来五年内可用于修复道路的资金将比等待时增加近两倍。确保驾驶员安全:如果现在不这样做,许多密歇根州的桥梁和立交桥都面临坍塌的风险,这可能会导致道路关闭并造成人员伤亡。从长远来看节省资金:现在为道路和基础设施提供资金将节省长期资金,因为这样可以减少以后更昂贵的维修需求。让我们现在就开始工作:这个计划意味着道路将立即开始修复,而不是等待立法机构采取行动。油价不会上涨:重建密歇根计划的资金来源不会增加油价。
工作人员建议 OPC 批准向 UCSB 拨款高达 2,100,000 美元,以制定加州海滩恢复计划。加州的海滩以其独特的地质、多样的野生动物以及公共通道和娱乐价值而闻名于世。然而,研究发现,气候变化的影响,包括海平面上升 (SLR)、沿海风暴增多和侵蚀,可能会导致海滩被淹没和悬崖坍塌。这些影响将如何影响栖息地和人类使用和娱乐活动仍未确定。这项拟议项目将为 UCSB 提供资金,以领导一个研究小组:确定该州最容易受到 SLR 和侵蚀的海滩;评估海滩背后的地质特征(如悬崖或悬崖)如何应对海平面上升的影响;根据最佳可用科学为地方政府提供一套策略,以选择和优先考虑海滩适应策略;并强调全州解决和实现海滩恢复的趋势。
本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。
摘要。天坑会导致许多交通基础设施资产下沉和坍塌。因此,交通基础设施管理机构投入了大量的时间和金钱来检测和绘制天坑地图,作为其资产管理计划的一部分。传统上,天坑是通过区域侦察来检测的,包括对场地进行目视检查以确定现有的天坑,或对场地进行设备检查以确定潜在的天坑或以前填满的天坑。另一种检测天坑的方法是通过查看地图,例如地质图。这些方法既昂贵又耗时,而且劳动强度大。遥感技术的最新进展,尤其是机载光探测和测距 (LiDAR),可以准确、快速地检查地球表面海拔的变化。本研究的重点是开发一个使用机载 LiDAR 检测和绘制天坑的概念框架。这个概念框架为未来将机载 LiDAR 用于天坑检测和绘制奠定了基础。
顾名思义,悬臂梁 MEMS 开关是一种由机械位移控制的电开关。它由两个主要部分组成:底座和悬臂梁(图 1)[1]。悬臂梁由导电材料制成(或其一部分,取决于设计),通常是铝。底座上沉积有一层导电材料层。在设备的这两个导电部分之间施加电压后,形成一个有限平行板电容器 [2, 3],由于电容器板之间的静电吸引力 [4, 5],悬臂梁开始向底座弯曲。悬臂梁以弹性反作用力 [6] 作出反应,并在两个力抵消的位置停止。在某个电压(驱动电压)[7–10] 下,力之间的平衡变得不稳定,悬臂梁在底座上坍塌 [11],从而建立电容器板之间的接触并闭合电路。在该模型中,认为下电极上没有沉积介电层(因此极化电荷可以忽略不计 [12])。新的理论模型考虑了有限平行板电容器中的边缘效应。将理论上获得的驱动电压与计算机模拟的 MEMS 设备驱动电压进行了比较。
合理设计的概念涉及基于科学而非经验程序对所有载荷进行全面确定,以便将不确定性关系降至最低。这种方法的理念是,结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂纹、完全的坍塌或拉伸失效(第二章)。合理性的概念。人们认为船体的设计与概率方法一致,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计是将失效概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题要复杂得多,这里不再讨论。
在本研究中,我们探索了一种通过使用不透明模具(如镍模具)进行热压印在 SU-8 光刻胶中形成图案的快速低成本工艺。该工艺的主要障碍之一是,未固化的 SU-8 即使在接近室温下也具有极好的可成形性,但由于模具不透明,样品在压印过程中无法暴露在紫外线下,因此会导致压印图案在脱模期间和脱模后坍塌。为了解决这个问题,用紫外线、热量和 O 2 等离子体对未固化的 SU-8 光刻胶进行预处理以控制其可成形性,并应用于热压印测试,以在复制保真度方面相互比较。结果,在给定的压印条件和模具尺寸下,用紫外线预处理 8 秒的 SU-8 样品产生最佳复制质量,并且我们可以在没有石英模具的情况下成功复制 SU-8 光刻胶中的微图案。与传统的 UV 压印工艺相比,该工艺具有模具成本更低、脱模更容易、气泡更少等潜在优点。2008 Elsevier BV 保留所有权利。
合理设计的概念涉及基于科学而非经验程序对所有载荷进行全面确定,以便将不确定因素降至最低。这种方法包含这样一种思想,即结构响应也可以准确确定,并且可以避免任意较大的安全系数或“无知因素”。该概念与考虑结构的“需求”和“能力”的现代结构设计方法一致。简而言之,不是确保简单计算的设计应力低于材料的极限强度一个任意的安全系数,而是尝试确定作用在结构上的所有载荷的需求,然后确定承载能力——结构在没有失效的情况下可以承受的载荷。当然,这种方法需要对失效进行定义,失效可能是严重的弯曲、大的裂缝、完全坍塌或拉伸失效(第二章)。合理设计的概念。人们认为船体的设计符合概率方法,这种方法已被证明对于处理随机航道载荷至关重要。需求和能力都可以用概率来表示,令人满意的设计就是将故障概率降低到可接受的低值的设计。确定详细结构设计的局部载荷或应力的问题