[概述]生命科学研究和阐明疾病机制需要高的时间分辨率,这允许观察蛋白质和其他物质在毫秒中的精细运动。现有的蛋白质标签具有有限的光稳定性和亮度,使这些观察结果变得困难。 该研究团队由Tohoku大学跨学科科学领域研究所的Niwa Shinsuke领导,Kita Tomoki的一名研究生开发了一个名为“ FTOB(Fluorescent-LabeLed Tiny DNA折纸)的新荧光标签”,使用DNA与DNA进行了DNA,并与Associent in University a Engine atiforing Mie Suie Mie Yuki合作。与常规标签相比,该FTOB不太可能引起光漂白或眨眼,并且通过极高的时间分辨率,可以观察到蛋白质的运动至少几十分钟。此外,FTOB被设计为使用称为“ DNA折纸”的技术自由重组,就像块一样,可以广泛应用于研究生命现象,例如细胞分裂和与各种疾病(例如阿尔茨海默氏病和癌症)相关的蛋白质。 该结果于2025年2月11日在线发表在“学术杂志”细胞报告物理科学报告中。
鉴于,由于奥柏林大学对上述指令的承诺,该机构不再直接持有化石燃料业务,并且自 2017 年以来没有对专门与化石燃料开发相关的基金进行此类投资,且此类间接投资的份额正在下降,目前占捐赠基金的不到 1%;
1 实验室确认的免疫力也可以接受 2 完整的基础系列包括 2 剂 PRP-OMP(PedvaxHIB)或 3 剂 HbOC(ActHib 或 Pentacel) 3 如果孩子在 12 个月前完成基础系列,则作为最后的加强剂量。在 12 个月或之后和 15 个月之前接种第一剂 Hib 的儿童需要接种 2 剂。在 15 个月或之后接种第一剂 Hib 疫苗的儿童只需接种一剂 4 2009 年 1 月 1 日以后出生的所有儿童都需要接种甲型肝炎疫苗 5 对于之前未接种过流感疫苗的儿童,同一流感季节需要接种两剂,在随后的流感季节需要接种一剂 2013 年 10 月 30 日修订
在附加费提案中,董事会提议添加更多此类交易 - 包括美国G -SIB在美国清除的几乎所有OTC衍生物交易 - 用于计算G -SIB附加费的复杂性和互连指标。这样做,董事会将大大提高美国G-SIB的客户OTC清算活动的资本要求。附加费的提议增加了对客户OTC清算的资本要求,这将因董事会,OCC和FDIC在其单独的提议规则制定的单独通知中共同提出这项活动的额外资本增加,以实施巴塞尔III端端规则(“任命”提案(“任务”提案,“ 4”,以及“ 4 and the Charcherge parcherge proposals”,“ doposals”)。
⯡䛻䠈≉ᐃ䛾䝍䝇䜽䜢ᐇ⾜䛩䜛䛸䛔䛖ᙺ䜢䛘䜙䜜䠈䛭䜜䜢ᐇ ⾜䛩䜛䜒䛾䛷䛒䜛䛛䜙䠈 responsibility 䜢ᯝ䛯䛩䜒䛾䛷䛒䜛䛸ゝ䛘 䜛䠊䛭䜜䛻ᑐ䛧䛶䠈 accountability 䛿ேᕤ䝅䝇䝔䝮䛻䛿ᮇᚅ䛥䜜 䛶䜒䛔䛺䛔䛧䠈ᯝ䛯䛥䛺䛔䛸䛔䛖䛾䛜⌧≧䛷䛒䜛䛸ゝ䛘䜛䠊 ᮏㄽᩥ䛷䛿䠈௨ୖ䛾ព䛷䛾 accountability 䠄ㄝ᫂㈐௵䠅䜢 ᣢ䛱䛖䜛 AI 䜶䞊䝆䜵䞁䝖䜢ᵓ⠏䛧䠈䛭䜜䛜♫䛻ཷ䛡ධ䜜䜙䜜 䜛䠄㈐௵䜢ᯝ䛯䛩䛣䛸䜢ᮇᚅ䛥䜜䜛䠅䛣䛸䛜䛒䜚䛘䜛䛛䛻䛴䛔䛶㆟ ㄽ䛩䜛䠊 [High Level Expert Group on Artificial Intelligence 19] 䛻䜘䜛 䛸䠈 accountability 䠄ㄝ᫂㈐௵䠅䛻㛵䛧䛶⪃៖䛩䜉䛝ほⅬ䛸䛧䛶௨ ୗ䛾䠐䛴䛜ᣲ䛢䜙䜜䛶䛔䜛䠖 y ┘ᰝᢸᙜ⪅䛻䜘䜛䠈䜰䝹䝂䝸䝈䝮䜔䝕䞊䝍䜔タィ䝥䝻 䝉䝇䛻ᑐ䛩䜛┘ᰝྍ⬟ᛶ (auditability) y ㈇䛾ᙳ㡪䛾᭱ᑠ䛸ሗ࿌ (minimization and reporting negative impacts) y 䝖䝺䞊䝗䜸䝣 (trade-offs) y ⿵ൾ (redress) 䛣䜜䜙䛿䠈 AI 䜢㛤Ⓨ䛩䜛ே䜔⤌⧊䛜ᯝ䛯䛩䜉䛝✀䚻䛾ㄝ᫂ 䛸䛧䛶ิᣲ䛥䜜䛶䛔䜛䛜䠈ᮏㄽᩥ䛷䛿䠈 AI ⮬య䛻ㄝ᫂㈐௵䜢ᣢ 䛯䛫䜛䛣䛸䜢⪃䛘䜛䠊䛣䛾䛯䜑䠈ㄝ᫂䜢ᐇ⾜䛩䜛䛾䛿 AI ⮬య䛷 䛒䜛䠊ᮏㄽᩥ䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈 ᥎⸀䛧䛯ື⏬䛜㐺ษ䛷䛒䛳䛯ሙྜ䠈䜶䞊䝆䜵䞁䝖䛿䛺䛬䛭䛾 䜘䛖䛺ែ䜢ᣍ䛔䛯䛛䠈Ⓨ㜵Ṇ䛾䛯䜑䛻䛹䛖䛩䜛䛛䜢⮬䜙ㄝ᫂ 䛩䜛䠊 Ẹἲ䠓䠌䠕᮲䛷䛿䠈䛂ᨾពཪ䛿㐣ኻ䛻䜘䛳䛶ே䛾ᶒཪ䛿 ἲᚊୖಖㆤ䛥䜜䜛┈䜢ᐖ䛧䛯⪅䛿䠈䛣䜜䛻䜘䛳䛶⏕䛨䛯ᦆ ᐖ䜢㈺ൾ䛩䜛㈐௵䜢㈇䛖䠊䛃 䛸つᐃ䛧䛶䛔䜛䠊䛣䜜䛿 accountability 䠄ㄝ᫂㈐௵䠅䛾୍䛴䜢つᐃ䛧䛶䛔䜛䛸⪃䛘䜙䜜䜛䠊 ୍⯡ⓗ䛻䛿䠈ㄝ᫂㈐௵䛾䛸䜚᪉䛸䛧䛶䛿䠈ㅰ⨥䛩䜛䠋ฮ⨩䜢 ཷ䛡䜛䠋ᶒ䜔ᆅ䜢ᡭᨺ䛩䠋㈺ൾ䛩䜛➼䛜䛒䜚䛘䜛䠊ᮏㄽᩥ 䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈䛣䛾䛖䛱䛾 䛂ㅰ⨥䛩䜛䛃䛣䛸䜢ᐇ䛧䛯䠊ᶒ䜔ᆅ䜢ᡭᨺ䛩䛣䛸䛾୍✀䛸䛧 䛶䠈᥎⸀䜢᥍䛘䜛䛣䛸䜒䛒䜚䛘䜛䠊 䛂ฮ⨩䜢ཷ䛡䜛䛃䛣䛸䛜 AI 䛾㈐௵䛾䛸䜚᪉䛸䛧䛶䛒䜚ᚓ䜛䛛䛻 䛴䛔䛶䛾㆟ㄽ䜒⯆῝䛔䛜䠈ᮏㄽᩥ䛷䛿䛣䜜௨ୖ䛿ゐ䜜䛺䛔䠊 AI 䛜䛂㈺ൾ䛩䜛䛃䛣䛸䛿䠈 AI ྥ䛡䛾㈺ൾ㈐௵ಖ㝤 (liability insurance) 䠄䛯䛸䛘䜀 [ ᪥ᮏ䝻䝪䝑䝖Ꮫㄅ≉㞟 20] 䠅䛾ᑟධ䛻䜘䜚 ᐇ⌧䛷䛝䜛ྍ⬟ᛶ䛜䛒䜛䛰䜝䛖䠊䛯䛰䛧䠈ಖ㝤ᩱ䛾ᨭᡶ䛔䜢 AI ⮬య䛜䛧䛺䛔ሙྜ䛻 AI 䛜㈺ൾ䛧䛯䛸ゝ䛖䛣䛸䛿㐺ษ䛷䛺䛔䜘䛖 ࿊ཙʁˡښැښࢤࠪښۢনϴڰௌ ښܵથңָָӅܵՌָݜڂՌๅָߊ ϱνϧέτΡϔஎݜڂ࣪KDWDQDND#LLLVNLWDFMS
只需拍摄一张照片(拍摄桥梁),即可轻松创建 3D 模型,从而可以重现实际现场,避免因疏忽而导致的重新检查。此外,第三方也更容易检查 3D 模型,从而提高检查质量。 ・您创建的 3D 模型可以共享。如果有 3D 模型,我们可以解释图纸
人工智能经过几十年的发展,如今已成为一个著名且成熟的学术领域(Stone 等人,2016 年)。专注于领域知识表示和使用的符号人工智能是人工智能研究的早期领域(Ribes 等人,2019 年)。最近的许多创新都发生在统计机器学习领域,包括使用人工神经网络的深度学习方法,包括自然语言处理、计算机视觉和机器人等领域的应用(Stone 等人,2016 年)。现代人工智能特别依赖于处理大型数据集,以一定程度的自主性进行处理和加权,并提供概率性而非确定性的结果。人工智能的伦理、政策和法律问题尚未明确界定。数据的多样性和数量以及算法驱动的分析通常违反直觉的输出使得预测危害变得更加困难。用于支持人工智能的数据来自大量来源,包括可能甚至不知道数据是为此目的而收集的人们。然而,将人工智能应用于这些异构数据得出的结论往往具有知识的分量,而没有对其不确定性进行有意义的说明。这一领域的一个关键挑战是试图理解和主张“黑箱”分析技术(Fleischmann & Wallace,2005,2009)的责任时出现的问题——尤其是当使用这些技术进行的研究结果用于指导政策、指导资源和应对紧急情况时(Lehr & Ohm,2017)。关于人工智能成功和失败的流行描述并非没有话语权。在讨论“坏”人工智能时,往往很难不去想 HAL、天网或其他类似的媒体对人工智能失败的描述(事实上,当我们的采访对象被问及人工智能的潜在负面后果时,他们经常会提到这些流行的描述)。同样,对人工智能的正面评价往往无法解释这些系统的缺陷和局限性,或者无法透明地表示它们的运作或范围。克兰兹伯格(1986)的《技术第一定律》认为,“技术既不是好的也不是坏的,也不是中性的”(第 547 页)。过度夸大人工智能的积极或消极影响的极端例子属于将人工智能视为纯粹的好或坏的阵营。然而,同样重要的是要注意,人工智能并不是中性的,一些人工智能系统对特定社会或整个社会的不同成员有一些好的影响和一些坏的影响。因此,挑战在于确定哪些因素影响了人工智能的“好”或“坏”。坏数据是坏人工智能的一个常见替罪羊。现代人工智能的特点是它与广泛的异构数据收集和分析机制的关系以及对它们的依赖。算法分析提供了处理
该作品根据免费国际许可 Creative Commons CC BY-SA 4.0 发布(需要注明作品原作者的义务,并有义务在与原始作品相同的许可下共享衍生作品)。