量子计算的并行计算能力和量子比特的特殊性质为图像处理任务提供了有效的解决方案。本文提出了一种基于Fisher-Yates算法和Logistic映射的量子图像加密算法。首先利用Fisher-Yates算法生成三个密钥序列,其中一个密钥序列用于对图像的坐标量子比特进行编码。利用另外两个密钥和预设规则,基于编码后的坐标量子比特设计量子坐标置乱操作,对明文图像的空间信息进行有效的置乱。接下来,生成另一组密钥序列,其中一个密钥序列用于对图像的颜色量子比特进行编码。利用另外两个密钥序列和不同的规则,设计了一种基于编码颜色量子比特的量子比特平面置乱操作,成功对图像的颜色信息进行了置乱。最后基于Logistic映射生成量子密钥图像,并基于Fisher-Yates算法对密钥图像进行置乱,以提高密钥复杂度。将原图像与置乱后的密钥图像进行异或运算,得到最终的密文图像。给出了该方案的完整量子电路图。实验结果和安全分析证明了该方案的有效性,该方案提供了很大的密钥空间,计算复杂度仅为O(n)。
2π,其中k是x方向上的波形,n是频带索引。要考虑到自旋轨道的影响,我们将假设ψk,n和u k,n都是二维旋转器。我们将幅度E的电场施加到平行于边缘(即X方向)的方向上,即,汉密尔顿人受到潜在项EE ˆ X的扰动,其中 - e是电子电荷,而位置操作员ˆ x。对于具有锯齿形和胡须边缘(保留山谷数)的石墨烯纳米替宾,坐标(x,y)的作用由单位单元格L和组合索引(M,σ)播放,其中m = 1。。。n表示每个单位单元格中的两个原子水平行,其中σ原子(a或b)中的两个原子行(见图1(a),(c)在主文本中)。请注意,一排可能会错过任何一个sublattice的原子,如图1(c),在每个单元单元的第1行中错过了一个A原子。在显示纳米孔中的密度和电流的结果时,在Y轴上的位置只能解析到行数中。 因此,Y坐标将被离散索引所取代,该索引将采用整数值,以在一行中标记位置,并在行之间标记位置(中途)。在Y轴上的位置只能解析到行数中。因此,Y坐标将被离散索引所取代,该索引将采用整数值,以在一行中标记位置,并在行之间标记位置(中途)。
图 2. S-QD 样品的 2DES 测量。(a)S-QD 样品在选定的布居时间 t 2 值下纯吸收 2DES 图的演变(图已标准化为 1)。虚线指出了激发激光轮廓覆盖的 1S 电子跃迁的位置。(b)和(c)在对角线(18500, 18500 cm -1 )坐标(圆圈)和非对角线(18900, 17200 cm -1 )坐标(正方形)提取的衰减轨迹与 t 2 的关系。黑色:实验数据;红色:从全局拟合分析获得的拟合轨迹。振荡残基报告在下面板中。(d)和(e)分别对图 (b) 和 (c) 中显示的衰减轨迹进行时间频率变换拍频分析。在拍频 1000 cm -1 处绘制一条灰色虚线,作为视觉引导。
2 史瓦西黑洞 11 2.1 Birkhoff 定理.......................................................................................................................11 2.2 引力红移.......................................................................................................................12 2.3 史瓦西解的测地线.......................................................................................................13 2.4 爱丁顿-芬克尔斯坦坐标.......................................................................................................13 . ... . ... . ....................................................................................................................................................................................30 2.13 奇点. ....................................................................................................................................................................................................30
现在存在几种方案来获得对原子结构的控制;但是,许多人不考虑原子的坐标。在使用电子束控制的最初实现中,例如,在石墨烯中的掺杂运动运动时,人类操作员将手动将光束放置在附近的掺杂剂,以使其与邻居碳交换位置。在这些情况下,考虑原子位置,但这完全是手动程序。要将其扩展并推广到其他系统,需要相对于特定原子组的光束定位自动化。换句话说,必须在尽可能接近实时的接近时,然后进行特定的光束定位。最近,结果表明,集成神经网络可以处理STEM图像的实时原子分割[4,5]。也许更关键的是,这种原子分类方案必须是稳健的,因为它是在实验过程中积极执行的,这意味着模型超参数无法不断更改以提供合理的坐标提取。无论如何,合奏网络既可以实时为原子分割提供快速和强大的解决方案。提供了原子坐标和类,必须选择光束位置。对于某些材料,可以显然应放置梁以引起所需的响应,即形成预期的缺陷结构。在其他材料中,它可能更为复杂,例如,大量的国家行动对集合,其中梁位于分布中相对于原子类中的分布,并成像所得的结构;理论计算可以替代地进行
评论,科学评论和观点17。J.J. Vittal,“ [2+2]光载载反应是一种通过机械化学研磨来监测固态分子运动的工具”,J。PhotoChem。 光二醇。 c:光化学。 Rev。 57(2023)100636 16。 Y.-L。 Li,A.-J。 li,S.-L。 Huang,J。J. Vittal,G.-Y. Yang,“光催化的polypyridyl ru(II)或环数IR(III)官能化结构”,Chem。 Soc。 Rev。 52(14)(2023)4725-4754 15。 G.K. Kole,J.J。 Vittal,“固态和溶液中环丁烷配体的异构化”,J。Ind. 化学。 Soc。 ,99(9)(2022)100630 14。 B.B. Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。 化学。 res。 55(10)(2022),1445-1455 13。 G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。J.J. Vittal,“ [2+2]光载载反应是一种通过机械化学研磨来监测固态分子运动的工具”,J。PhotoChem。光二醇。c:光化学。Rev。 57(2023)100636 16。 Y.-L。 Li,A.-J。 li,S.-L。 Huang,J。J. Vittal,G.-Y. Yang,“光催化的polypyridyl ru(II)或环数IR(III)官能化结构”,Chem。 Soc。 Rev。 52(14)(2023)4725-4754 15。 G.K. Kole,J.J。 Vittal,“固态和溶液中环丁烷配体的异构化”,J。Ind. 化学。 Soc。 ,99(9)(2022)100630 14。 B.B. Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。 化学。 res。 55(10)(2022),1445-1455 13。 G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。Rev。57(2023)100636 16。Y.-L。 Li,A.-J。 li,S.-L。 Huang,J。J. Vittal,G.-Y. Yang,“光催化的polypyridyl ru(II)或环数IR(III)官能化结构”,Chem。 Soc。 Rev。 52(14)(2023)4725-4754 15。 G.K. Kole,J.J。 Vittal,“固态和溶液中环丁烷配体的异构化”,J。Ind. 化学。 Soc。 ,99(9)(2022)100630 14。 B.B. Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。 化学。 res。 55(10)(2022),1445-1455 13。 G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。Y.-L。 Li,A.-J。li,S.-L。 Huang,J。J. Vittal,G.-Y.Yang,“光催化的polypyridyl ru(II)或环数IR(III)官能化结构”,Chem。Soc。Rev。 52(14)(2023)4725-4754 15。 G.K. Kole,J.J。 Vittal,“固态和溶液中环丁烷配体的异构化”,J。Ind. 化学。 Soc。 ,99(9)(2022)100630 14。 B.B. Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。 化学。 res。 55(10)(2022),1445-1455 13。 G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。Rev。52(14)(2023)4725-4754 15。G.K. Kole,J.J。 Vittal,“固态和溶液中环丁烷配体的异构化”,J。Ind.化学。Soc。,99(9)(2022)100630 14。B.B.Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。 化学。 res。 55(10)(2022),1445-1455 13。 G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。Rath,J.J。 Vittal,“表现出[2 + 2]光载体反应和动态效应的光电反应晶体”,Acc。化学。res。55(10)(2022),1445-1455 13。G. Chakraborty,I.H。 Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。G. Chakraborty,I.H。Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。 修订版 ,121(7)(2021)3751-3891 12。 M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。Park,R。Medishetty,J.J。 Vittal,“ T wo二维金属有机框架材料:综合,结构,性质和应用”,化学。修订版,121(7)(2021)3751-3891 12。M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。 化学。 修订版 ,435(2021)213789(邀请评论)11。 J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。M. Gupta,J.J。 Vittal,“控制MOF的互穿和结构转化的控制”,坐标。化学。修订版,435(2021)213789(邀请评论)11。J. J. Vittal,H.S。 quah,“工程固态的固态结构转换”坐标。 化学。 修订版 ,342(2017)1-18(邀请评论)10。 9。 和债券。 157(2014)105-144。J. J. Vittal,H.S。quah,“工程固态的固态结构转换”坐标。化学。修订版,342(2017)1-18(邀请评论)10。9。和债券。157(2014)105-144。M. J. Werny,J.J。 Vittal,“调节三个多晶型物中的热和体性行为”,IUCRJ,4(2017)202-203(受邀的科学评论)。 R. Medishetty,J.J。 Vittal,“光化学反应的金属有机框架”,用于光子学应用的金属有机框架(编辑:B。Chen和G. Qian),结构。 (被邀请)8。 G.K. Kole,J.J。 Vittal,“固态反应性,涉及协调聚合物的结构转化”,化学。 Soc。 修订版 42(4)(2013)1755-1775,(邀请了Werner Issue的评论)M. J. Werny,J.J。 Vittal,“调节三个多晶型物中的热和体性行为”,IUCRJ,4(2017)202-203(受邀的科学评论)。R. Medishetty,J.J。 Vittal,“光化学反应的金属有机框架”,用于光子学应用的金属有机框架(编辑:B。Chen和G. Qian),结构。 (被邀请)8。 G.K. Kole,J.J。 Vittal,“固态反应性,涉及协调聚合物的结构转化”,化学。 Soc。 修订版 42(4)(2013)1755-1775,(邀请了Werner Issue的评论)R. Medishetty,J.J。 Vittal,“光化学反应的金属有机框架”,用于光子学应用的金属有机框架(编辑:B。Chen和G. Qian),结构。(被邀请)8。G.K. Kole,J.J。 Vittal,“固态反应性,涉及协调聚合物的结构转化”,化学。Soc。修订版42(4)(2013)1755-1775,(邀请了Werner Issue的评论)
pk3.ix.a.1儿童掌握了跑步,跳跃,攀爬和踏板的基本技能。pk4.ix.a.1。儿童表现出孤立的协调和平衡。pk3.ix.a.2儿童与成人支持一起进行运动序列。pk4.ix.a.2儿童坐标运动序列以执行任务。
绿兔灌木和橡胶兔灌木。II. 牧场描述 A. 放牧用途位置:此部分输入放牧许可证持有人提供的物理描述,以及通过 WebSoil Survey 获得的 GPS 坐标。许可证持有人使用许可证的章节/放牧区是什么?牧场管理单位位于 Tsaile Wheatfields Chapter,位于放牧区 11 内。牧场管理单位位于印第安路线 12 以北 6 英里处。B. 大小:本节说明许可证上分配给个人的英亩数。如果社区采用开放式放牧方法,则可以通过 WebSoil Survey 网站获得用于放牧的估计面积。牧场管理单位由 Wheatfields 下区内的十英亩土地组成。Begay 先生的 RMU 可以通过以下 GPS 坐标找到:41°24'12.2"N 2°10'26.5"E。
如今,全球卫星导航系统(GNSS)在许多领域都起着基本作用,例如民航,海上和土地导航和地理器,由于能够在全球范围内提供全球,三维,全天候,速度和速度和时间同步。全球导航卫星系统练习的最终产品是接收站的三维坐标(3D)。这些坐标在大多数地理空间应用中被发现可靠。但是,除了大地坐标外,数据管理中的某些应用还需要其他信息。因此; GNSS已与其他数据获取方法集成在一起,以提高各种应用程序的数据质量。这些有助于解决各个方法失败的许多问题。本文研究了一些基于卫星的系统,并报告了GNSS与其他数据采集工具的集成,例如地球级别,遥感,地理信息系统(GIS),惯性导航系统(INS)等。在某些情况下,协同作用导致了其他卫星或有效载荷计划,例如重力恢复和气候实验(GRACE),而它已改善了许多领域的GNSS应用程序。GNSS集成。