缩写:DRE¼耐药性癫痫; gee¼广义估计方程; QSM¼定量敏感性映射; seeg¼立体记录摄影; TSC¼结节硬化症复合物T u骨硬化症(TSC)是一种遗传疾病,通常与难以治疗的耐药性癫痫(DRE)有关。1虽然一些研究报告了恢复癫痫手术后的有利结果,以治疗与TSC相关的DRE,但其他研究报告说,在重新进行手术后,只有约50%的人无癫痫发作,尤其是在没有明显显着块茎的复杂病例中。2-6使用立体电子志摄影(SEEG)指导这些患者的手术的越来越多的实践,并认识到,在具有明显的“占主导地位”块茎且焦点推定的癫痫发作区域的患者中,取得了最佳的结果。7
缩写:DRE¼耐药性癫痫; gee¼广义估计方程; QSM¼定量敏感性映射; seeg¼立体记录摄影; TSC¼结节硬化症复合物T u骨硬化症(TSC)是一种遗传疾病,通常与难以治疗的耐药性癫痫(DRE)有关。1虽然一些研究报告了恢复癫痫手术后的有利结果,以治疗与TSC相关的DRE,但其他研究报告说,在重新进行手术后,只有约50%的人无癫痫发作,尤其是在没有明显显着块茎的复杂病例中。2-6使用立体电子志摄影(SEEG)指导这些患者的手术的越来越多的实践,并认识到,在具有明显的“占主导地位”块茎且焦点推定的癫痫发作区域的患者中,取得了最佳的结果。7
缩写:DRE¼耐药性癫痫; gee¼广义估计方程; QSM¼定量敏感性映射; seeg¼立体记录摄影; TSC¼结节硬化症复合物T u骨硬化症(TSC)是一种遗传疾病,通常与难以治疗的耐药性癫痫(DRE)有关。1虽然一些研究报告了恢复癫痫手术后的有利结果,以治疗与TSC相关的DRE,但其他研究报告说,在重新进行手术后,只有约50%的人无癫痫发作,尤其是在没有明显显着块茎的复杂病例中。2-6使用立体电子志摄影(SEEG)指导这些患者的手术的越来越多的实践,并认识到,在具有明显的“占主导地位”块茎且焦点推定的癫痫发作区域的患者中,取得了最佳的结果。7
摘要 木薯 (Manihot esculenta. Crantz) 是一种富含淀粉的木质块茎根作物,可作为重要的食物,尽管其潜力巨大,但很少有人研究它作为生物能源作物的潜力。这种作物发挥这种双重作用的主要瓶颈是其块茎在两种用途上的竞争。主要的木薯产区主要将块根用作食物,这导致它作为生物能源作物被忽视。使用非食用木薯部分作为纤维素生物燃料生产的原料是一种很有前途的策略,可以克服这一挑战。然而,在非块茎部分,大多数糖分都被木质素复合物高度隔离,使其无法被细菌生物转化。此外,由于多种生产限制,这些主要种植区的木薯产量并不理想。影响木薯作为食品和生物能源作物生产的挑战是相互关联的,因此需要一并解决。通过改良木薯以抵抗生物和非生物胁迫,可以提高产量,满足根部对食物和生物能源生产的高需求。此外,产量的提高将提高非食品部分用于生物能源的可用性,这是更大的目标。本综述讨论了通过改良木薯以抵抗降低其生产力的胁迫的努力,以及提高生物量生产的策略,这两者都对食物和生物能源都很重要。此外,还探讨了可以简化木薯生物转化以提高生物能源生产的潜在策略。
GSM:0803652009抽象粮食安全是世界上最重要和最有价值的秘密。因此,这项工作审查了与马铃薯生产有关的最具挑战性的问题。调查并隔离了与爱尔兰土豆块茎索相关的有趣。以下真菌; Alternta alternaria, Aspergillus candidus, A. fumigatoides, A. Nidulans, A. Niger, A. Terreus, Aureobasidium Pullullans, Botrytis Ceinerea, Chaetomium Globosum, Cladosporicum Herbarum, Currularia Lunata, Fusarium Moniliforme, F. Oxysporicum, F. Roseolum, F. Solani-tuberosi, Mortierlla Wolfi, Mucor Pusillus, Myceliopthhora thermophila, R. Stolenfer, Rhizophus Oyzae, Pennicilium Chrysgen, Paecilmyces Varioti, Rhizopus nigricans, scopuropsis breakaulis, syncephalastrum racemosmosum, Trichothecium Roseum and Ulacladium从腐烂的块茎中分离出宪章。根茎偷窃者的百分比最高,其次是尼日尔曲霉和替代品替代品。释放的致病性测试是,R。stolenfer是最有毒的,其次是F. oxyspoum,而Racemosmos M. caremosmos是最不毒的fangus。应鼓励使用良好的存储设施,适当的控制措施和改善爱尔兰的马铃薯量片,以减少储存的爱尔兰马铃薯交易的破坏。这样,在世界上进行粮食安全不仅将不仅尼日利亚,而且撒哈拉以南非洲将是一个忘记的问题。关键字:土豆块茎,牙齿,储存,腐烂,市场,预防,挑战,安全
1。引言园艺与蔬菜,水果,鲜花,农作物,块茎,块茎农作物以及药用,芳香和装饰植物的种植有关,人们可以在那里了解农作物生产,植物繁殖,植物繁殖,遗传工程,准备土壤和植物生理学以及植物生理学以及同时的素食中心的植物,植物生理和植物中心,素食中心,素食中心,素养,素养,素养,素养,素养,素养,素养,素养,素养,素养,素养,植物的制作,景观建设等。一位花卉文化主义者(受保护的耕种)是一个从事各种活动的人,涉及温室里涉及预备,种植和收获后管理的各种活动。他还对植物的维护和保养,温室的设计和维护,准备媒体和其他对花农作物必不可少的投入。这项工作应有效地进行,以允许生产高质量的花朵,收获和收获后的管理,以获得更高的回报。
结节性硬化症复合物(TSC)是一种遗传疾病,其特征是细胞过度生长,在整个人体中产生Hamartomas或良性肿瘤。hamartomas通常在脑实质中最常形成,它们被称为块茎。TSC与70-90%的寿命癫痫患者和自闭症谱系障碍(ASD)患病率为40-50%有关(Portocarrero LKL,2018)。块茎中的异常细胞取代了健康细胞,而不是增加大脑中细胞的总数(Crino,2010年),并且有关头圆周长(HC)和宏观畸形(HC大于2个标准偏差高于平均值的HC)的报告是稀疏的(Fidler DJ,2000)。HC增加可能反映了脑实质体积和/或脑脊液(CSF)体积增加(Bartholomeusz HH,2002)。大型畸形以TSC和其他发育障碍的速度为14–29.7%,但仅此前尚未报道过TSC人群中的脑头畸形率(Fidler DJ,2000)(Webb DW,1996)。TSC中HC和癫痫之间的关系也没有先前研究过。
到2022年,神经发育疾病(NDDS)领域的几个进展。当然,NDD包括各种各样的疾病,其中大多数具有不同的病因。然而,由于技术方法的发展和巩固,例如蛋白质组学和RNA序列,以及改善脑器官的生物智能(AI)进行生物ATATA分析,已在2022年进行了一些新的病因机制,以进行某些NDD。在这里,我们提出了其中一些发现的提示。例如,中心群调节神经元的迁移,可能是脑室周围异位症的病因。同样,错误折叠蛋白的积累可以解释COVID-19患者的神经系统作用。并且,自闭症谱系障碍(ASD)可能是改变皮质的表达。我们还涵盖了其他有趣的方面,作为对新的NDD的描述,其特征是对应激颗粒(SG)组件涉及的基因进行放松管制,或者描述了新发现的神经祖细胞,该神经祖细胞解释了肿瘤和皮质块茎的不同表型中的肿瘤和皮质块茎中的不同表型;以及如何使用福尔马林固定的石蜡包裹的样品来解密童年突然无法解释的死亡(SUDC)的病因(SUDC)。
马铃薯(Solanum tuberosum L.)是世界第三大消费食品,营养丰富、生产潜力大,在全球粮食安全中发挥着核心作用。在巴西,尽管产量很大,但由于高温、病虫害压力加大等因素,仍远未达到最高作物产量。高于作物理想范围(15°C 至 20°C)的温度会损害植物的新陈代谢,降低块茎的产量和质量。在这些健康挑战中,马铃薯Y病毒(PVY)的影响最大,它影响植物的新陈代谢、必需光同化物的运输和生产,从而损害植物的发育。鉴于上述情况,该项研究的目标是选出具有高农学潜力且在热带条件下能抗 PVY 病毒的克隆。该实验是在 2020/2021 年水资源收获期间采用 p-rep 实验设计在位于 Lavras-MG 市的 Lavras-Fazenda Muquém 联邦大学科学技术发展中心进行的。对来自 RPC 群体的 312 个克隆(分为 12 个家族,由预先建立的杂交获得)进行了以下性状评估:总块茎生产力(t ha -1 )和比重。在评估农艺性状后,确定了存在 Ry adg 等位基因的克隆。通过分子标记辅助选择(SAM)。使用 R 软件,通过混合线性模型,对农学数据分别进行每个性状的偏差分析 (ANADEV)。使用克隆的平均值加上实验误差来获得维恩图。这项工作允许通过 SAM 识别出存在 RY adg 等位基因的大约 60% 的克隆。此外,还有 80 个克隆品种具备 BRS ANA 品种的三大优良特性,可用于继续进行改良计划。 RPC 10-04 克隆品种脱颖而出,块茎总产量超过 40 吨/公顷,比重接近 1.070,并且对 PVY 具有抗性。关键词:Solanum tuberosum L.;改进;马铃薯Y病毒;标记辅助选择。
摘要:糖充当许多水果和蔬菜作物的主要能源。糖的生物合成和运输至关重要,尤其有助于生长和发育。甜蜜是一个重要的基因家族,在植物的生长,发育和适应各种类型的胁迫(生物和非生物)中起着至关重要的作用。尽管已经在许多植物物种中鉴定出甜蜜的基因,但在Potentilla Anserina中没有有关糖果的信息。在本研究中,我们进行了全面的基因组生物信息学分析,并确定了Potentilla anserina基因组中总共有23个候选PASWEET基因,这些基因在十个不同的染色体上随机分布。系统检查了这些基因的系统发育分析,染色体位置,基因结构,特定的顺式元素,蛋白质相互作用网络和生理特征。与拟南芥的系统发育关系的确定结果表明,这些Pasweet基因被分为四个进化枝(I,II,III和IV)。此外,通过定量的实时聚合酶链反应(QRT-PCR)验证,组织特异性基因表达验证,即鉴定出的Pasweets在各种组织(根,茎,叶子和花朵)中差异表达。主要是,有效地揭示了肿胀的pasweets(7、9和12)的相对折叠基因表达有效地表明,肿胀的块茎中的pasweet(7、9和12)在高度表达(300-,120倍和100倍)。在总体结果的基础上,建议PASWEETS(7、9和12)是参与P. anserina肿胀的块茎形成的候选基因。为了进一步阐明pasweets的功能(7、9和12),通过将它们插入烟草叶中,可以确认它们的亚细胞位置,并注意到这些基因存在于细胞膜上。在Crux中,我们推测我们的研究提供了一个有价值的理论基础,以进一步对PASWEET基因家族进行深入的功能分析及其在块茎发育中的作用,并进一步增强Potentilla Anserina的分子育种。