副校长的信息,我对全能者和医院的支持非常满意,并感谢我们的校园在2021年5月底之前在没有任何伤亡的情况下成为Covid-19的自由区。我为我的大学团队感到自豪,因为我的大学团队在个人和行政层面采取了所有预防和治疗措施,以击败电晕病毒以及地区管理部门的支持,以维持法律和秩序。我同样为我们的教师同事几乎继续进行学术活动而感到自豪,并继续激发学生在大流行造成的可怕环境中,而且还按照学术日历来完成学生的学术要求。我们还成功地进行了第10届研究理事会会议(实际上),并审查了正在进行的研究活动,以增强农民的收入。本次会议中发布的五种品种(3种块茎农作物和2种混合大米)和9条技术值得我丰富的赞赏和祝贺。最后,我向全能者祈祷,以改善大学家庭和所有人的健康。
的发酵食品的安全性和改善的安全性,需要通过采用分子技术来隔离野生菌株的菌株,并将其鉴定到物种水平上。这些乳酸菌株用作食物发酵中的功能开胃培养物(Okorie等人2013,Owusu-Kwarteng等。 2015)。 最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。 木薯块茎可以加工成Fufu和Garri等各种非洲主食。 它仅涉及将根浸入水中,直到它们变软或擦洗。 但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。 已经发现不同的微生物在发酵过程中发挥重要作用。 在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。 它是由玉米,几内亚玉米或高粱制成的。 S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。 2013)。 目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。 分离株可以用作功能性粮食生产中的起动培养物。2013,Owusu-Kwarteng等。2015)。最近,乳酸细菌一直是研究的重点,因为它们在食品发酵,保存,益生菌和功能性食品中强调了重要性。木薯块茎可以加工成Fufu和Garri等各种非洲主食。它仅涉及将根浸入水中,直到它们变软或擦洗。但是,在发酵的最佳条件下,这大约需要三到四天(Ogbo 2013)。已经发现不同的微生物在发酵过程中发挥重要作用。在尼日利亚东南部,OGI也称为PAP是一种常规的发酵食品,构成了主要的主食和断奶食品。它是由玉米,几内亚玉米或高粱制成的。S。cerevisiae,L。plantarum,肠杆菌和其他乳酸细菌已从发酵的OGI中连续分离(Egwim等人。2013)。目前的研究旨在使用保守的和分子策略来隔离和表征乳酸细菌与乳酸发酵食品。分离株可以用作功能性粮食生产中的起动培养物。
通过微型繁殖/组织培养生产种子马铃薯:将微观传播技术整合到商业种子生产中已将马铃薯从实验室试管转变为实际的田间培养。用马铃薯块茎的组织培养的初始实验追溯到1951年。从那时起,已经成功地培养了来自各种器官,包括叶子,叶柄,节间段,卵巢,茎,根和芽尖的各种器官的植物组织[6,7]。在生产种土豆中,微型传播的采用有望解决与常规种子生产系统相关的许多问题[8]。这个过程通常涉及分生组织培养以消除病毒。为增强产生无病毒植物的可能性,分生组织培养通常与热疗和/或化学疗法结合使用。尽管有细致的护理,但获得了大量无病毒的梅美龙通常具有挑战性。因此,在大规模微型繁殖程序中用作源工厂的每个梅美隆都必须进行病毒测试
健康植物(水果和蔬菜)和动物(肉)的内部组织本质上是纯净的。却原始的和加工的(无菌)食物包含不同类型的霉菌,酵母,细菌和病毒。微生物从天然(包括内部)来源和外部来源进入食物,从生产开始到食用时,食物就可以接触到食物。植物起源食物的天然来源包括水果,蔬菜,坚果,谷物和香料的表面,以及某些块茎中受损的组织和毛孔(例如萝卜和洋葱)。动物起源食物的天然来源包括皮肤,头发,羽毛,胃部 - 胃道,泌尿生殖道,呼吸道和牛奶动物的牛奶管(奶嘴)。天然微层与宿主保持生态平衡,其类型和水平随动植物的类型及其地理位置和环境条件而变化很大。除了天然微生物外,食物还可以污染来自外部来源的不同类型的微生物,例如空气,土壤,污水,污水,水,饲料,饲料,人类,食物成分,设备,包装和昆虫。微生物类型及其从这些来源进入食物的水平差异很大,并取决于食物处理过程中使用的卫生程度。
摘要:超加工(UP)食品的摄入量的增加正在导致食物和养分消费量的变化,对消费者行为产生负面影响。本研究旨在评估食物对巴西成年人饮食的影响,从而验证其对总能量的贡献与其他NOVA群体消费量的贡献与趋势的增加之间的关联,食物亚组,能源消耗,能源消耗以及宏观营养素和宏观营养素。,我们对巴西里奥格兰德·诺(Rio Grande do)的921名制造工人进行了观察,横断面研究,该研究人员是在巴西的里奥格兰德(Rio Grande Do)中进行的。通过线性回归测试了对粮食贡献的五分之一五分之一的消费趋势。结果表明,较高的食物消耗与较高的能量,碳水化合物以及总,单,单和多不饱和脂肪,饱和脂肪和反式脂肪以及微量营养素钙,铁和硫胺素有关。以及较高的即食食品消费,伴随着需要制备的食物的降低,例如豆类,块茎和根,蔬菜和水果,这可能代表了这种人群中不可推广的慢性疾病的风险。
011 作物种植;市场园艺;园艺 0111 谷物和其他未另分类作物的种植01111 粮食作物(谷物和豆类)的种植 01112 油籽(包括花生或大豆)的种植 01113 棉花和其他植物纺织纤维植物的种植(包括用于编织、衬垫或填料或刷子或扫帚的植物材料的种植) 01114 烟草的种植,包括其初加工 01115 甘蔗或甜菜的种植 01116 橡胶树的种植;收获乳胶并在种植园中对液态乳胶进行处理以供运输或保存 01117 种植主要用于制药或杀虫、杀菌或类似用途的植物(包括种植鸦片和大麻) 01118 种植 Hina 叶 [Mehandi] 01119 种植其他未列明的作物(包括种植土豆、山药、红薯或木薯;啤酒花球果、菊苣根或含有高淀粉或菊粉的根和块茎;种植用于播种的种子,种植包括草在内的饲料植物以及未分类的作物) 0112 种植蔬菜、园艺特产和苗圃产品 01121 在露天或有遮盖的情况下种植蔬菜 01122 种植园艺特产,包括:花卉、水果或蔬菜种子;无根插枝或接穗;球茎、块茎、块根、玉米或冠。还包括花卉或花蕾的种植 0113 水果、坚果、饮料和香料作物的种植 01131 咖啡豆或可可豆的种植 01132 茶叶或马黛茶叶的种植,包括与茶园相关的茶厂活动。(独立单位的加工归类为 1549 类) 01133 食用坚果的种植,包括椰子 01134 水果的种植:柑橘、热带仁果或核果;小果实,如浆果;其他水果,如鳄梨、葡萄、枣或面包果等。(葡萄酒的制造,在葡萄生长的同一地点进行,但例外) 01135 香料作物的种植,包括:香料叶(例如月桂、百里香、罗勒);香料种子(例如茴香、芫荽、小茴香);香料花(例如肉桂);香料果实(例如丁香);或其他香料(例如肉豆蔻、生姜)。还包括槟榔叶的种植。01136 浆果或坚果等的采集01139 水果、坚果、饮料和香料作物的种植,未另分类;生牛奶和牛精液的生产(生产黄油、奶酪和其他乳制品作为次要活动不会改变单位的分类)012 动物养殖 0121 牛、羊、山羊、马、驴、骡和驴驹的养殖;奶牛养殖[包括种马养殖和为此类动物提供饲养场服务] 01211 牛(包括牦牛和水牛)的繁殖、饲养和放牧等
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
人们经常提到的一个事实是,到本世纪中叶,全球人口增长率可能会超过全球农业生产增长率。此外,全球各地的生产力差异很大,但农业的大部分负担却落在少数物种的栽培上,这些物种大多位于不同于其驯化起源地的地方,而且往往受到截然不同的环境条件的影响( Fernie 和 Yan,2019 年)。最近的技术发展——主要是下一代测序技术的可及性和可负担性的增强——已经使我们能够鉴定出 100 多个驯化基因( Fernie 和 Yan,2019 年)。其中许多基因,例如与碎裂性、种子大小和休眠丧失相关的基因,在我们的作物物种中都得到了保留( Gross 和 Olsen,2010 年; Lenser 和 Theissen,2013 年)。然而,其他基因似乎只针对某些作物或作物类型,例如果实形状的改变(Xiao 等人,2008 年)或块茎的进化(Cheng 等人,2016 年;Hardigan 等人,2017 年)。确定基因后,它们可用于从头驯化,即对很少栽培或尚未驯化的物种进行遗传改良。关键是要确定表现出特定期望特性的物种,例如更高的产量和肥料利用率
抽象类黄酮是一大批天然存在的多酚化合物,几乎普遍存在各种植物部分,例如水果,浆果,叶子和块茎。这些化合物是在植物中对环境压力源(例如微生物感染)的反应。这些烟酮中的抗氧化特性为我们提供了许多健康的好处。可以通过浸渍和沸腾的方法从上述天然来源中提取它们,以至于先进的方法,例如微波和超声波。已经进行了许多研究,以研究丙型类动物在预防人类传染病方面所起的保护作用。当前治疗此类传染病的方式仅依赖于化学治疗剂和辅助疗法,例如姑息治疗和支持性护理。这些化学治疗剂(主要是抗生素)导致我们的免疫力变性,并增加了对其他几种疾病的敏感性。因此,至关重要的是,我们处理感染的方法集中在预防上。这可以通过加强我们的免疫系统来实现,这是针对此类疾病的主要防御路线。类黄酮可以帮助提高我们的免疫力,结构感染并降低抗生素耐药性的发生率。因此,这些天然化合物在很大程度上被研究并用作营养素,以补充我们的日常饮食,并成功地减少了我们体内主要的传染病的发生。
木薯 (Manihot esculenta Crantz) 是一种富含淀粉的块根作物,养活了全世界热带和亚热带地区超过 10 亿人。然而,这种主食会产生有毒的氰化物,需要经过加工才能安全食用。过量食用加工不充分的木薯,再加上缺乏蛋白质的饮食,会对神经退行性产生影响。由于木薯的杂合性质,通过常规育种降低氰化物含量存在问题;重组通常会破坏克隆繁殖品种的一系列理想性状。为了降低木薯中的氰化物水平,我们使用 CRISPR 介导的诱变技术来破坏细胞色素 P 450 基因 CYP79D1 和 CYP79D2,这两个基因的蛋白质产物可催化氰化物葡萄糖苷生物合成的第一步。敲除这两个基因可消除木薯品种 60444 和西非农民偏爱的品种 TME 419 的叶子和块茎中的氰化物。虽然单独敲除 CYP79D2 可显著减少氰化物,但诱变 CYP79D1 则不会,这表明这些旁系同源物的功能已经出现分化。我们的工作表明,木薯基因组编辑可提高食品安全、降低加工要求并带来环境效益,这些优势可轻松扩展到其他农民偏爱的品种。