玛丽莲·史密斯(Marilyn Smith)是佐治亚理工学院航空航天工程学院的戴维·刘易斯(David S.她的研究包括计算不稳定的空气动力学和空气弹性,包括复杂的配置,包括旋翼。她目前正在为主动流控制,虚张声势和湍流中的非线性应用开发降级模型。她是VFS的技术研究员,也是Raes和AIAA的研究员。她是VFS技术总监名誉,也是VFS和VLC董事会的前成员。她获得了许多技术荣誉;最近的是2022 VFS Nicolsky演讲和AIAA应用空气动力学奖,以及2023 61st Raes Lanchester Memorial演讲。
Hanscom NC3 MILCON Hanscom / MIT LL EPF MILCON 科德角太空军基地 ERCIP Natick SSC 战斗供食实验室(人体工程学)MILCON VA West Haven 外科大楼 DHS 改造(Barnes 大楼 7/8 楼) Pawcatuck/Rhode Island 海岸线非结构性 11:15 – 11:30 其他主题
1 MOE的关键实验室,用于凝结物质的非平衡合成和调节,Shaanxi省级高级材料和介质物理学的主要实验室,XI'AN JIAOTONG大学,XI'AN,XI'AN,710049,710049,中国2个国家主要的实验室,是纳尼型纳米型材料和量化量的纳米级材料和量子量的国家主要实验室, 200433,中国3个州制造系统工程钥匙实验室,西安·贾东大学,西安,710049,中国4号材料材料纳米结构研究中心,国家材料科学研究所,1-1-1-1-1-1-1-1-1-1-1-1-15-0044,日本305-0044,日本5日本6东南大学物理学院量子材料和设备的主要实验室,211189,中国南京7 Zhangjiang Fudan International Innovation Center,Fudan University,上海2011年
垂直轴风力涡轮机 (VAWT) 为城市环境中的可再生能源发电提供了一种有前途的解决方案,而传统的水平轴涡轮机通常不切实际。这篇综述论文研究了城市环境中 VAWT 设计优化的最新进展,重点是克服与低风条件和复杂的城市风模式相关的挑战。我们分析了创新的空气动力学设计,包括螺旋和 Savonius-Darrieus 混合模型,这些设计可提高湍流和多向风中的性能。本文还探讨了平衡耐用性、降噪和成本效益的材料和制造技术。此外,我们还回顾了在多变风条件下最大限度捕获能量的尖端控制系统和电力电子设备。我们讨论了 VAWT 与建筑结构和城市规划的整合,强调了广泛采用的潜力。我们的研究结果表明,VAWT 技术的最新创新已显著提高了它们在城市应用中的可行性,一些设计在低风条件下实现了高达 30% 的效率提升。然而,在优化启动性能、降低生产成本和减轻人口密集地区的环境影响方面仍然存在挑战。本综述强调了 VAWT 作为可持续城市能源系统关键组成部分的潜力,并确定了未来研究和开发的关键领域,包括先进材料、人工智能驱动的控制系统和全面的城市风能测绘工具。
Flow 部门专门为客户的工艺提供专门设计的泵送解决方案。我们提供通过深入研究和开发流体动力学和先进材料而开发的泵、搅拌器、压缩机、研磨机、筛网和过滤器。我们是水、石油和天然气、电力、化学品和大多数工业领域泵送解决方案的市场领导者。
蛋黄壳结构化硅/碳(YS-SI/C)阳极材料显示出对商用锂离子电池(LIB)的希望,因为它们具有很高的特定容量和出色的循环寿命。但是,尽管研究了近十年,但仍未实现其商业化,这主要是由于机械强度差,速率能力有限和能量密度低。本研究报告了通过热化学蒸气沉积合成的层次YS-SI/C阳极材料,用于垂直石墨烯片的生长(VGS),聚合物自组装和一步碳化,从而通过VGSS建立了SI核心和碳壳之间的连接,从而增强了YS-Chemical和机械的特征。独特的材料的表现优于无VGSS的复合材料,该复合材料在0.1 c时的高特定容量为1683.2 mAh g-1,在10 c时在10 c时的出色速率性能为552.2 mAh g-1,在1000个循环后,较高的速率性能为552.2 mAh g-1,卓越的容量保留率为80.1%。与LINI 0.8 CO 0.1 Mn 0.1 O 2个阴极匹配时,安培小时袋细胞分别提供高重量和大量能密度分别为429.2 WH kg-1和1083 WH l-1。有限元分析表明,VGSS降低了碳壳上的应力浓度,有助于空心材料承受工业电极日历。这项工作证明了在实用液体中YS-SI/C阳极材料的商业应用的潜力。
摘要:垂直有序的介孔二氧化硅膜(VMSF)是由超毛孔和超薄垂直纳米渠道组成的一类多孔材料,它们在电分析传感器和分子分离的区域具有吸引力。然而,VMSF很容易从碳纤维电极中掉下来,从而影响其广泛的应用。在此,氮化碳纳米片(CNN)作为粘合剂层,可在玻璃碳电极(GCE)上稳定VMSF生长。CNN可以与VMSF的硅烷醇基团共价结合,从而有效地促进了VMSF在GCE表面上的稳定性。受益于VMSF的许多开放纳米孔,用碳水化合物抗原15-3(CA15-3)特异性抗体修改VMSF外表面,可以通过硅胶内部硅含量进行电化学探针的目标传输,从而通过硅胶内部降低敏感性检测到1000的nosion nanochnels,从0.47 mu/mL的检测极限。此外,提出的VMSF/CNNS/GCE免疫传感器能够高度选择性,准确地确定尖峰血清样品中的Ca15-3,该样品提供了一种简单有效的电化学策略,可在复杂的生物学标本中检测各种实用生物标志物。