标准仪器 • 空速指示器 • 高度计(英寸汞柱) • 旋翼/发动机双转速表 • 歧管压力表 • 垂直速度指示器 • 磁罗盘 • 气缸盖温度计 • 油温和压力表 • 燃油量表 • 电流表 • 化油器温度计 • 石英钟 • 数字 OAT 表/电压表 • 小时表 警告灯 • 低电压 • 燃油不足 • 低油压 • 旋翼转速低(灯光和喇叭) • 主齿轮箱温度 • 主齿轮箱芯片 • 尾齿轮箱芯片 • 旋翼制动器接合 • 起动器接合 • 离合器执行器 • 调速器关闭 标准设备 • LED 防撞和导航灯 • 双着陆灯 • 面板和地图灯 • 辅助燃油系统 • 门锁 • 地板和手动对讲机开关 • 有色挡风玻璃和窗户 • 腹部硬点 • 拖车适配器 • 机油滤清器和发动机油快速排放 • 地勤轮 • 旋翼叶片系紧装置 • 挡风玻璃封面 • 罗宾逊旅行袋
摘要 - 飞机着陆对飞行员来说不是一件容易的事,因此需要一些计算机或自动驾驶仪的辅助,以及可靠高效的自动着陆控制器。这项任务甚至对控制器来说也不容易,因为有许多变量需要考虑,包括风、耀斑、高度、进近速度、航向、垂直速度以及飞机与跑道的对准等,这导致在这种情况下使用传统控制器的成本很高。因此,模糊逻辑可用于设计一个具有推理能力的系统,作为着陆助手的控制器,从而节省成本、高效使用材料并更好地管理时间。该项目中使用的模型飞机是在 MATLAB 中的 Aerosim 插件中给出的。因此,实现了自动着陆控制器助手的目标,使用此模拟,使用经典技术在 MATLAB 中的 Aerosim 插件模型中完成飞机的稳定。在这里,控制器中使用的模糊逻辑纠正了错误,使着陆变得顺利而轻松。
前言 本手册为参与实施和操作 TCAS II 的人员提供背景信息,以便他们更好地了解交通警报和防撞系统 (TCAS II)。本手册是美国联邦航空管理局 (FAA) 于 2000 年发布的 TCAS II 7.0 版手册的更新版。它介绍了 7.1 版对 CAS 逻辑的更改,并更新了有关使用 TCAS II 和操作经验的要求的信息。7.1 版逻辑变化将改善垂直追逐情况下的 TCAS 解决建议 (RA) 感应反转逻辑。此外,所有“调整垂直速度,调整”RA 都转换为“平飞,平飞”RA,以更清楚地表明需要降低垂直速率。TCAS II 7.1 版的最低运行性能标准 (MOPS) 于 2008 年 6 月获得批准,7.1 版设备预计将于 2010-2011 年投入运行。 6.04a 和 7.0 版本的设备预计在可预见的未来在获得授权的情况下将继续运行。
标签 203 - 压力高度 (1013,25 mb) -1,000 至 80,000 英尺 标签 204/220 气压校正高度 #1/#2 -1,000 至 80,000 英尺 标签 205 - MACH 数 0.200 至 4.000* MACH 标签 206 - 计算空速 (CAS) 0/40 至 1024* 节 标签 207 - 最大允许空速 (VMO) 150 至 1024* 节 标签 210 - 真空速 (TAS) 0/100 至 2048* 节 标签 211 - 总气温 (TAT) -61° 至 +100° 摄氏度 标签 212 - 垂直速度 (RoC) 0 至 32,768* 英尺/分钟标签 213 - 静态气温 (SAT) -100° 至 +100° 摄氏度 标签 221 - 指示攻角 -60° 至 +60° 度 标签 234/236 - 气压校正 mb #1/#2 20.67 至 31.16 mbar 标签 235/237 - 气压校正 inHg #1/#2 700 至 1066 inHg 标签 353 - 指示空速 (IAS) 0/40 至 2000 节 标签 241 - 校正攻角 -60° 至 +60° 度
提供了基于¼◦全局NEMO配置的实验集合,包括潮汐强制和非潮汐模拟,并同时使用默认的z*地理位置垂直坐标和Z〜滤波的任意lagrangian-eulerian坐标,后者已知后者被称为减少数值混合。这用于研究数值混合的敏感性,以及所得模型的漂移和偏见,对潮汐强迫和垂直坐标的选择。该模型被发现是为了模拟可接受的逼真的外潮,并且第一模式的内部潮汐具有与观测值和高分辨率潮汐模型的估计相一致的空间分布,垂直速度每天超过50米。与Z*坐标的强迫在30°S和30°N之间增加了上海中的数值混合,而发生强烈的内部潮汐,而Z〜坐标将大大降低了潮汐模拟中的数值混合和偏见,将其降低到低于Z*非潮汐控制的水平。讨论了对下一代气候模型的影响。
标签 203 压力高度 -1,000 至 +53,000 英尺 标签 204/220 气压校正高度 -1,000 至 +53,000 英尺 标签 205 MACH 数值 0.200 至 0.999 MACH 标签 206 计算空速 CAS 0/40 至 450 节 标签 210 真空速 TAS 0/100 至 599 节 标签 207 最大值。允许空速 VMO 150 至 450 节 标签 211 总气温 TAT -60 至 +99 °C 标签 213 静态气温 SAT -99 至 +60 °C 标签 212 垂直速度 0 至 20,000 英尺/分钟标签 215 冲击压力(已修正)0 至 372.5 mbar 标签 217 静压(已修正)0 至 64 inHg 标签 235/237 气压设置 QNH 20.67 至 31.00 inHg 标签 234/236 气压设置 QNH 700 至 1,050 mbar 标签 242 总压力 135.5 至 1354.5 mbar 标签 270 离散字 #1 标签 353 指示空速 IAS 0/40 至 450 节 标签 377 设备标识符 006
标签 203 压力高度 -1,000 至 +53,000 英尺 标签 204/220 气压校正高度 -1,000 至 +53,000 英尺 标签 205 MACH 数值 0.200 至 0.999 MACH 标签 206 计算空速 CAS 0/40 至 450 节 标签 210 真空速 TAS 0/100 至 599 节 标签 207 最大值。允许空速 VMO 150 至 450 节 标签 211 总气温 TAT -60 至 +99 °C 标签 213 静态气温 SAT -99 至 +60 °C 标签 212 垂直速度 0 至 20,000 英尺/分钟标签 215 冲击压力(已修正)0 至 372.5 mbar 标签 217 静压(已修正)0 至 64 inHg 标签 235/237 气压设置 QNH 20.67 至 31.00 inHg 标签 234/236 气压设置 QNH 700 至 1,050 mbar 标签 242 总压力 135 至 1354.5 mbar 标签 270 离散字 #1 标签 353 指示空速 IAS 0/40 至 450 节 标签 377 设备标识符 006
15.补充说明 这项工作是在任务 AM-A-00-HRR-519 下进行的。16.摘要:在 FAA 民用航空医学研究所的可重构通用航空模拟器(配置为 Piper Malibu)中评估了一种模糊逻辑“性能控制”系统,该系统提供包络保护和对空速、垂直速度和转弯速率的直接控制。在一项飞行任务中评估了 24 个人(高飞行时间飞行员、低飞行时间飞行员、学生飞行员和非飞行员各 6 人)的表现,该任务要求参与者跟踪从起飞到着陆的 3-D 航线,由图形路径主飞行显示器表示。还使用传统控制系统收集了每个受试者的基线表现。所有参与者都操作每个系统,对其功能进行了最少的解释,并且没有接受过任何培训。结果表明,模糊逻辑性能控制减少了变量误差和超调,新手学习所需的时间更少(从达到稳定性能所需的时间可以看出),使用起来所需的努力更少(减少了控制输入活动),并且受到所有群体的青睐。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪器;另一方面,它们现在看起来更像一个计算机工作站。本书强调涵盖当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用 RLG 和 FOG 的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,例如空速指示器、高度计、垂直速度指示器,这些指示器具有某些严重的局限性。
本文介绍了空军技术学院开展的分析工作的部分结果,这些分析工作涉及在飞机操纵时静态和动态状态下计算机匹配系统、数字显示和模拟设备的可能性。以垂直速度参数为例,提供了一种匹配直升机 Mi-17-1V 指示的方法,该直升机装有 SWPL-1 Cyclops 飞行数据头盔显示系统(由空军技术学院开发,与模拟航空电子设备合作)。通过第一排惯性元件调整垂直速度显示,在计算机图形 KG-1 中以编程方式实现。另一方面,调整头盔提示系统 NSC-1 Orion 中显示的信息的方法(由空军技术学院为 W-3PL Capercaillie 直升机制造)以及从集成航空电子系统(带数字航空电子设备)获得的信息,例如磁航向(从航向布局 KCS-305 获得)和地理航向(从惯性导航系统 EGI-3000 获得)。通过对多功能显示器 MW-1、半透明显示器 HUD 和头盔显示器 WDN-1 的指示进行修改(以选定偏角的形式,在计算机任务 KM-1 上以编程方式实现)和对磁偏差的修改(定期引入航向补偿器布局 KCS-305)来实现指示的调整。