目录 页码 前言 (xvi) 引言 (xvii) 第一章 定义 1-1 1.1 引言 1-1 1.2 空中交通服务术语 1-1 第二章 空中交通服务安全管理 2-1 2.1 总则 2-1 2.2 目标 2-1 2.3 空中交通服务安全管理活动 2-2 2.4 安全水平监测 2-2 2.5 安全审查 2-3 2.6 安全评估 2-5 2.7 加强安全的措施 2-7 2.8 人力资源管理 2-7 第三章 空中交通服务系统容量和空中交通流量管理 3-1 3.1 容量管理 3-1 3.2 空中交通流量管理 3-4 第四章 空中交通服务的一般规定 4-1 4.0 当局的设立 4-1 4.1 提供空中交通管制服务的责任4-1 4.2 提供飞行情报服务和告警服务的职责 4-3 4.3 空中交通管制单位之间的管制责任划分 4-4 4.4 飞行计划 4-6 4.5 空中交通管制许可 4-8 4.6 水平速度管制指令 4-12 4.7 垂直速度管制指令 4-14 4.8 从 IFR 改为 VFR 飞行 4-15
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
然而,大约 20 秒后,湍流从中度增加到严重。在“导航模式”下以 0.78 马赫 (M0.78) 的速度选择开启的自动驾驶仪 (AP) 断开连接,飞机迅速爬升至指定高度以上。随后,强烈的冰雹开始影响飞机。两名机组人员都注意到,自动驾驶仪断开连接时主警告灯亮起,但由于冰雹的噪音,两名飞行员都没有听到相关的音频警告。FO 手动驾驶飞机,选择发动机点火开启,将速度设置为 M.076 以应对湍流,并打开驾驶舱顶灯。机长将导航显示器 (ND) 上的距离选择器改为 40 海里,以检查交通防撞系统 (TCAS) 上的冲突交通,监控主飞行显示器 (PFD) 上的飞机速度,监控副驾驶的侧杆输入并取消主警告灯。在整个过程中,PF 试图重新获得 FL340 并保持航迹。然而,飞机偏离了其指定巡航高度 1,300 英尺以上至 300 英尺以下,滚转至不超过 18° 的倾斜角。垂直速度指示器 (VSI) 上的指示证实,至少有一次爬升或下降率超过每分钟 5,900 英尺。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
目录 页码 前言 (xvi) 引言 (xvii) 第 1 章 定义 1-1 1.1 引言 1-1 1.2 空中交通服务术语 1-1 第 2 章 空中交通服务安全管理 2-1 2.1 总则 2-1 2.2 目标 2-1 2.3 空中交通服务安全管理活动 2-2 2.4 安全水平监测 2-2 2.5 安全审查 2-3 2.6 安全评估 2-5 2.7 加强安全的措施 2-7 2.8 人力资源管理 2-7 第 3 章 空中交通服务系统容量和空中交通流量管理 3-1 3.1 容量管理 3-1 3.2 空中交通流量管理 3-4 第 4 章 空中交通服务的一般规定 4-1 4.0 当局的设立 4-1 4.1 提供空中交通服务的责任管制服务 4-1 4.2 提供飞行情报服务和告警服务的职责 4-3 4.3 空中交通管制单位之间的管制责任划分 4-4 4.4 飞行计划 4-6 4.5 空中交通管制许可 4-8 4.6 水平速度管制指令 4-12 4.7 垂直速度管制指令 4-14 4.8 从 IFR 改为 VFR 飞行 4-15
值得注意的是,过去 50 年来,大多数飞机技术都处于停滞状态。例如,喷气发动机依赖于 20 世纪 30 年代末开发的燃气涡轮机;飞机结构已达到稳定和饱和的水平。然而,仪表系统和航空电子设备仍在取得重大进展,主要目标是减少飞行员的工作量,并将飞行安全性提高到非常高的水平。使用半导体 VLSI 技术的另一个优势是显著减小了设备的尺寸和重量。驾驶舱不再像传统的老式钟表式仪表;另一方面,它们现在看起来更像一个计算机工作站。本书强调介绍当代的发展,而不是过多地关注过时的系统。例如,姿态测量传统上使用机械陀螺仪进行,而现代飞机中机械陀螺仪现在几乎已被环形激光或光纤陀螺仪取代。我们介绍了使用激光陀螺仪和光纤陀螺仪的捷联式角度传感器的最新进展。同样,使用微处理器技术的大气数据计算机已经取代了老式的全气动传统指示器,如空速指示器、高度计、垂直速度指示器,这些指示器存在某些严重的局限性。
摘要 — 触摸屏技术正迅速而渐进地进入商用航空电子领域,并被引入驾驶舱。本文介绍了荷兰航空航天中心 (NLR) 作为欧盟第 7 框架计划的 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分进行的试点实验的主要结果,请访问 www.across-fp7.eu。该实验的重点是新型触摸屏应用在民用运输飞机驾驶舱中的使用,并研究了(峰值)工作量减少的潜力。将讨论三种不同的触摸屏应用和相关的实验结果。首先,解决飞机的所谓战术飞行控制操作,例如改变飞机的速度、航向、高度、飞行高度或垂直速度。其次,设置了一种新颖的后期跑道变更功能,以支持机组人员在进近后期接受新着陆跑道的决定,同时仍允许安全轻松地配置飞机驾驶舱系统。同样,第三个新应用程序允许快速轻松地选择备用机场,随后创建和选择前往备用机场的新航线。进行了一项试点实验,十名航空公司机组人员参加了 NLR 的全动飞行模拟器 (GRACE)。基线形成了当今没有触摸屏功能的飞机运营。主观工作量和情况意识
对为期 4 个月的滑翔机任务进行了分析,以评估亚热带北大西洋西部边界反气旋涡旋中的湍流耗散。涡旋(半径 < 60 公里)的核心低位势涡度在 100 至 450 米之间,最大径向速度为 0.5 ms21,罗斯贝数 < 20.1。湍流耗散是根据滑翔机飞行模型得出的垂直水速推断出来的。耗散在涡旋核心中受到抑制(< = 53 102 10 W kg21),在其下方增强(.102 9 W kg21)。升高的耗散与垂直速度和压力扰动的准周期结构相一致,表明内部波是耗散的驱动因素。启发式射线追踪近似法用于研究导致湍流耗散的波浪-涡旋相互作用。射线追踪模拟与两种可能导致耗散的波浪-涡旋相互作用相一致:近惯性波能量被涡旋的相对涡度捕获,或内部潮汐(在附近的大陆坡产生)进入涡旋剪切的临界层。后一种情况表明,表征海洋盆地西部边界的强烈中尺度场可能充当“漏墙”,控制内部潮汐向盆地内部传播。